A novel image-to-knowledge inference approach for automatically diagnosing tumors

计算机科学 可解释性 乳腺超声检查 人工智能 工作量 乳腺癌 乳房成像 医学影像学 医学物理学 乳腺摄影术 机器学习 医学 癌症 内科学 操作系统
作者
Qinghua Huang,Dan Wang,Zhenkun Lu,Shichong Zhou,Jia Li,Longzhong Liu,Cai Chang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120450-120450 被引量:38
标识
DOI:10.1016/j.eswa.2023.120450
摘要

Breast cancer is one of the most vulnerable malignant tumors for women in the world, which seriously threatens women's life and health. Breast ultrasound imaging technology is widely used in clinical breast cancer detection due to its advantages of high safety, real-time and convenience. However, breast ultrasound diagnosis relies on experienced diagnostic medical sonographers to read the images and requires high-quality imaging of ultrasound images. On the one hand, reading the breast ultrasound images manually by the doctors is time-consuming and burdensome. On the other hand, cultivating an ultrasonographer is a costly process. The development of computer-aided diagnostic systems in recent years is a solution to these problems to some extent. More and more computer-aided diagnostic systems for breast ultrasound are being used in clinical practice, and their sensitivity and accuracy are higher than those of less senior ultrasonographers, which reduces the workload of physicians and improves diagnostic efficiency to a certain extent. Existing assisted diagnosis systems mainly use texture information such as LBP statistical histograms or deep features extracted from deep networks as the basis for diagnosis, which is not in line with the diagnosis mode of physicians and does not employ medical knowledge for diagnosis, making it difficult to make trade-offs in terms of interpretability and diagnostic performance. In this work, a new interpretable reasoning paradigm from images to knowledge is proposed. Based on this paradigm, interpretable features are firstly perceived as the medical knowledge from the images. The perceived features may be inaccurately identified, then the interpretable features are further amended to obtain high-quality knowledge. Finally, the knowledge is constructed into a knowledge graph and the diagnosis results are obtained by interpretable knowledge inference on the knowledge graph. The experimental results demonstrate that our approach achieves a trade-off in interpretability and diagnostic performance compared to the mainstream diagnostic systems based on deep learning methods and those based on traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助cc采纳,获得10
1秒前
酷炫芝麻完成签到,获得积分10
1秒前
5秒前
6秒前
zhang发布了新的文献求助10
7秒前
杨森omg发布了新的文献求助10
7秒前
cui完成签到,获得积分10
8秒前
杰king发布了新的文献求助10
13秒前
顾矜应助flysky120采纳,获得10
13秒前
sdvsd完成签到,获得积分10
15秒前
惜墨应助炙热芝采纳,获得30
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
25号底片应助科研通管家采纳,获得60
16秒前
Ava应助科研通管家采纳,获得20
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得20
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
xiaofei666应助科研通管家采纳,获得30
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
俏皮的幼珊完成签到 ,获得积分10
18秒前
行止完成签到,获得积分10
18秒前
19秒前
21秒前
24秒前
25秒前
超帅听枫发布了新的文献求助10
27秒前
沉静WT完成签到 ,获得积分10
27秒前
flysky120发布了新的文献求助10
27秒前
研友_VZG7GZ应助qiuqiu120234978采纳,获得10
27秒前
深情安青应助书生采纳,获得10
28秒前
29秒前
30秒前
Owen应助整齐凌萱采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102