摩擦电效应
材料科学
纳米发生器
压力降
气流
过滤(数学)
电压
空气过滤器
粒径
粒子(生态学)
滤波器(信号处理)
航程(航空)
复合材料
光电子学
纳米技术
电气工程
机械工程
化学工程
机械
压电
工程类
地质学
物理
海洋学
统计
入口
数学
作者
Masoumeh Karimi Kisomi,Sadegh Seddighi,Raheleh Mohammadpour,Alireza Rezaniakolaei
出处
期刊:Nano Energy
[Elsevier]
日期:2023-05-09
卷期号:112: 108514-108514
被引量:9
标识
DOI:10.1016/j.nanoen.2023.108514
摘要
The removal efficiency of traditional air filters decreases with decreasing particle size, requiring the use of highly compact filter layers to achieve high efficiency, resulting in high-pressure drops and power consumption. To address this issue, this study proposes a novel approach by combining triboelectric nanogenerator (TENG) properties with industrial air filters and face masks to improve removal efficiency while maintaining low-pressure drop. The study investigates the impacts of key parameters, such as airflow velocity, particle size, and applied voltage, on filter performance through a developed mathematical model. The optimal voltage range required to remove specific particle sizes is also modeled, and suitable triboelectric materials for producing the optimal voltage are suggested. Results show that the use of the suggested triboelectric-based filter, generated using a polypropylene (PP)-polyurethane (PU) TENG pair, with a 300 µm filter thickness, 30 µm pore size, and 30 µm fiber diameter, enhances the removal efficiency of particles from 23.0 % to 99.0 %. Specifically, a 10 V voltage on the fiber surface enables the removal of particles in the range of 10 nm to 100 µm with an efficiency of 99.0 %, which is 4 times higher than a traditional filter. The study demonstrates the potential of utilizing various antibacterial and polymer-based triboelectric materials in different applications, including self-powered smart face masks and industrial air filters.
科研通智能强力驱动
Strongly Powered by AbleSci AI