PEAMATL: A Strategy for Developing Near-Infrared Spectral Prediction Models Under Domain Shift Using Self-Supervised Transfer Learning

人工智能 计算机科学 学习迁移 模式识别(心理学) 红外线的 机器学习 物理 光学
作者
Yang Yu,Shangpeng Sun,Min Huang,Qibing Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:4
标识
DOI:10.1109/tim.2023.3273689
摘要

Near-infrared (NIR) spectroscopy combined with spectra prediction models have been widely employed as quick and cost-effective analytical techniques in the pharmaceutical, chemical, and food industries. However, calibration has to be conducted for a prediction model being constructed on data from the source domain if we want to apply the model to a new target domain. Most deep transfer learning methods, which extract domain-invariant features from the source domain samples and transfer these features to enhance the representation ability for target domain data, are available to calibrate prediction models. However, due to the difficulty of measuring samples' reference values (label), the reliance on labeled samples for supervised techniques to extract domain-invariant features remains a major bottleneck. In this study, we propose a novel self-supervised transfer learning approach named PEAMATL for learning and transferring generalized domain-invariant features from samples' spectra, aiming to accurately predict unseen samples' reference values. PEAMATL firstly trains a pyramid encoder consisting of three external attention modules to extract multi-scale features from unlabeled source domain samples using a self-supervised learning framework; secondly, it transfers the pre-trained spectra encoder followed by an initialized prediction head network to build a prediction model; finally, PEAMATL refines the model parameters using a portion of the labeled target domain samples to adapt to unseen target domain samples. The calibration analysis is tested on tablet, melamine, and apple datasets for predicting active pharmaceutical ingredient, turbidity point, soluble solid content, and firmness. Compared with three existing supervised and two self-supervised transfer learning methods, the proposed PEAMATL method achieves at least 3.32 % ~ 30.88 % prediction error reduction on 19 out of 20 scenarios involving three types of domain shift. Therefore, PEAMATL has the potential to be a generic framework for tackling the common problem of domain shift-induced performance degradation of prediction models in the domain of NIR-based quantitative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助JSM采纳,获得50
2秒前
Doc.Lee完成签到,获得积分10
6秒前
隐形曼青应助Xcc采纳,获得10
6秒前
顾矜应助YYL采纳,获得10
8秒前
8秒前
闪闪寒荷完成签到 ,获得积分10
9秒前
10秒前
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
顺心绾绾发布了新的文献求助10
14秒前
zhm完成签到,获得积分20
23秒前
顺宏冉呀完成签到,获得积分10
23秒前
vousme完成签到 ,获得积分10
30秒前
深情安青应助科研采纳,获得10
30秒前
mlle完成签到,获得积分10
36秒前
37秒前
Rain完成签到 ,获得积分10
40秒前
迷人荷花完成签到,获得积分10
42秒前
YYL发布了新的文献求助10
42秒前
逍遥完成签到,获得积分10
43秒前
吡咯爱成环应助mr_zhao采纳,获得10
50秒前
50秒前
51秒前
53秒前
我是老大应助yangluyao采纳,获得10
55秒前
迷人荷花发布了新的文献求助10
56秒前
David应助hiahia采纳,获得10
57秒前
zhaoman完成签到,获得积分10
1分钟前
1分钟前
yangluyao完成签到,获得积分10
1分钟前
焰斗完成签到,获得积分20
1分钟前
yangluyao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ec_w完成签到,获得积分10
1分钟前
小七完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372078
求助须知:如何正确求助?哪些是违规求助? 2989982
关于积分的说明 8738132
捐赠科研通 2673333
什么是DOI,文献DOI怎么找? 1464422
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668893