已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Smart Contract Anomaly Detection Method by Fusing Opcode and Source Code Features for Blockchain Services

操作码 智能合约 计算机科学 安全性令牌 源代码 数据库事务 编码(集合论) 脆弱性(计算) 异常检测 计算机安全 块链 数据挖掘 人工智能 数据库 计算机硬件 操作系统 程序设计语言 集合(抽象数据类型)
作者
Li Duan,Liu Yang,Chunhong Liu,Wei Ni,Wei Wang
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 4354-4368
标识
DOI:10.1109/tnsm.2023.3278311
摘要

Digital assets involved in smart contracts are on the rise. Security vulnerabilities in smart contracts have resulted in significant losses for the blockchain community. Existing smart contract vulnerability detection techniques have been typically single-purposed and focused only on the source code or opcode of contracts. This paper presents a new smart contract vulnerability detection method, which extracts features from different levels of smart contracts to train machine learning models for effective detection of vulnerabilities. Specifically, we propose to extract 2-gram features from the opcodes of smart contracts and token features from the source code using a pre-trained CodeBERT model, thereby capturing the semantic information of smart contracts at different levels. The 2-gram and token features are separately aggregated and then fused and input into machine-learning models to mine the vulnerability features of contracts. Over 10,266 smart contracts are used to verify the proposed method. Widespread reentrancy, timestamp dependence, and transaction-ordering dependence vulnerabilities are considered. Experiments show the fused features can help significantly improve smart contract vulnerability detection compared to the single-level features. The detection accuracy is as high as 98%, 98% and 94% for the three vulnerabilities, respectively. The average detection time is 0.99 second per contract, indicating the proposed method is suitable for automatic batch detection of vulnerabilities in smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默毛豆完成签到,获得积分10
刚刚
清新完成签到,获得积分20
刚刚
美丽谷蕊发布了新的文献求助10
刚刚
刚刚
星星之火完成签到,获得积分10
1秒前
2秒前
2秒前
CodeCraft应助bbw采纳,获得10
3秒前
Ray发布了新的文献求助10
3秒前
55155255完成签到,获得积分10
4秒前
xxhw0913发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
panpan完成签到,获得积分10
10秒前
清新的苑博完成签到,获得积分20
10秒前
居居子发布了新的文献求助10
13秒前
13秒前
郭倩发布了新的文献求助10
13秒前
Nn完成签到,获得积分20
13秒前
wanci应助乐多子采纳,获得10
13秒前
痴情的热狗完成签到,获得积分10
14秒前
xxhw0913完成签到,获得积分20
14秒前
15秒前
16秒前
Nn发布了新的文献求助10
18秒前
缓慢的谷秋应助BaooooooMao采纳,获得10
18秒前
18秒前
20秒前
20秒前
星曳发布了新的文献求助10
21秒前
ylc发布了新的文献求助20
22秒前
Nininni完成签到,获得积分10
23秒前
23秒前
24秒前
充电宝应助郭倩采纳,获得10
25秒前
田様应助Ray采纳,获得10
26秒前
白芷苏发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256511
求助须知:如何正确求助?哪些是违规求助? 2898749
关于积分的说明 8302100
捐赠科研通 2567874
什么是DOI,文献DOI怎么找? 1394777
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630602