Rapid authentication of <i>Chaenomeles</i> species by visual volatile components fingerprints based on headspace gas chromatography‐ion mobility spectrometry combined with chemometric analysis

化学 线性判别分析 化学计量学 色谱法 主成分分析 人工智能 计算机科学
作者
Shanming Tian,Huanying Guo,Minmin Zhang,Huijiao Yan,Xiao Wang,Hengqiang Zhao
出处
期刊:Phytochemical Analysis [Wiley]
标识
DOI:10.1002/pca.3170
摘要

Chaenomeles, including Chaenomeles speciosa (ZP), Chaenomeles sinensis (GP), Chaenomeles tibetica (XZ), and Chaenomeles japonica (RB), has been widely used as food in China for thousands of years. However, only ZP, was recorded to be the authentic medicinal Chaenomeles. Therefore, the rapid and accurate method for the authenticity identification of Chaenomeles species is urgently needed.To develop a method for rapid differentiation of Chaenomeles species.The visual volatile components fingerprints based on headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometric analysis, including principal component analysis (PCA), linear discriminant analysis (LDA) and partial least-squares discriminant analysis (PLS-DA), were utilised for the authentication of Chaenomeles species.The visual volatile components fingerprints by the GC-IMS intuitively showed the distribution features of the volatile components for different Chaenomeles samples. The LDA and PLS-DA models successfully discriminated Chaenomeles species with original discrimination accuracy of 100%. Fifteen volatile compounds (VOCs) (peaks 9, 12, 13, 19, 23, 24, 35, 48, 57, 65, 67, 76, 79, 80, 83) were selected as the potential species-specific markers of Chaenomeles via variable importance of projection (VIP > 1.2) and one-way analysis of variance (P < 0.05).This study showed that the visual volatile components fingerprints by HS-GC-IMS combined with chemometric analysis is a meaningful method in the Chaenomeles species authentication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖仔完成签到,获得积分10
刚刚
Chan0501完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
duxinyue发布了新的文献求助10
2秒前
汉堡转转转完成签到,获得积分10
3秒前
喵酱发布了新的文献求助30
3秒前
6666完成签到,获得积分10
3秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
4秒前
wjn完成签到,获得积分10
4秒前
5秒前
竹子完成签到,获得积分10
5秒前
MAKEYF完成签到 ,获得积分10
5秒前
6秒前
Owen应助猪猪hero采纳,获得10
6秒前
7秒前
CipherSage应助海棠yiyi采纳,获得50
8秒前
Khr1stINK发布了新的文献求助10
8秒前
8秒前
脑洞疼应助卡卡采纳,获得10
8秒前
8秒前
Rrr发布了新的文献求助10
9秒前
科研通AI5应助zmy采纳,获得10
10秒前
William鉴哲发布了新的文献求助10
10秒前
情怀应助只道寻常采纳,获得10
11秒前
11秒前
cyy完成签到,获得积分20
11秒前
orixero应助小庄采纳,获得10
12秒前
13秒前
侦察兵发布了新的文献求助10
13秒前
司徒元瑶完成签到 ,获得积分10
13秒前
梓榆发布了新的文献求助10
13秒前
13秒前
sweetbearm应助通~采纳,获得10
13秒前
斯文败类应助成就映秋采纳,获得10
14秒前
123456完成签到,获得积分10
14秒前
14秒前
moonlin完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794