Deep Supervised Dual Cycle Adversarial Network for Cross-Modal Retrieval

计算机科学 人工智能 判别式 模态(人机交互) 情态动词 特征(语言学) 语义学(计算机科学) 特征学习 代表(政治) 模式识别(心理学) 相似性(几何) 自然语言处理 语义相似性 特征提取 情报检索 机器学习 图像(数学) 语言学 化学 哲学 政治 政治学 高分子化学 法学 程序设计语言
作者
Lei Liao,Meng Yang,Bob Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 920-934 被引量:9
标识
DOI:10.1109/tcsvt.2022.3203247
摘要

Cross-modal retrieval tasks, which are more natural and challenging than traditional retrieval tasks, have attracted increasing interest from researchers in recent years. Although different modalities with the same semantics have some potential relevance, the feature space heterogeneity still seriously weakens the performance of cross-modal retrieval models. To solve this problem, common space-based methods in which multimodal data is projected into a learned common space for similarity measurement have become the mainstream approach for cross-modal retrieval tasks. However, current methods entangle the modality style and semantic content in the common space and neglect to fully explore the semantic and discriminative representation/reconstruction of the semantic content. This often results in an unsatisfactory retrieval performance. To solve these issues, this paper proposes a new Deep Supervised Dual Cycle Adversarial Network (DSDCAN) model based on common space learning. It is composed of two cross-modal cycle GANs, one for the image and one for the text. The proposed cycle GAN model disentangles the semantic content and modality style features by making the data of one modality well reconstructed from the extracted modal style feature and the content feature of the other modality. Then, a discriminative semantic and label loss is proposed by fully considering the category, sample contrast, and label supervision to enhance the semantic discrimination of the common space representation. Besides this, to make the data distribution between two modalities similar, a second-order similarity is presented as a distance measurement of the cross-modal representation in the common space. Extensive experiments have been conducted on the Wikipedia, Pascal Sentence, NUS-WIDE-10k, PKU XMedia, MSCOCO, NUS-WIDE, Flickr30k and MIRFlickr datasets. The results demonstrate that the proposed method can achieve a higher performance than the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wgt发布了新的文献求助10
刚刚
李爱国应助gao采纳,获得10
刚刚
刚刚
supertkeb完成签到,获得积分10
1秒前
ff完成签到,获得积分10
1秒前
王进完成签到,获得积分10
1秒前
1秒前
1秒前
姚玲发布了新的文献求助10
2秒前
黄学生完成签到 ,获得积分10
2秒前
maaicui完成签到,获得积分10
2秒前
周稅完成签到,获得积分10
3秒前
liujiahao完成签到,获得积分10
3秒前
slm完成签到,获得积分10
3秒前
4秒前
科研牛马人完成签到,获得积分10
4秒前
Emma完成签到 ,获得积分10
4秒前
wqm完成签到 ,获得积分10
4秒前
搞怪的友桃完成签到,获得积分10
5秒前
自然发布了新的文献求助10
5秒前
从容的尔云完成签到 ,获得积分10
6秒前
May完成签到,获得积分10
6秒前
6秒前
xx发布了新的文献求助10
8秒前
8秒前
lseonf完成签到,获得积分20
8秒前
8秒前
dbhfdgsh完成签到,获得积分10
9秒前
BallQ完成签到,获得积分10
9秒前
9秒前
三三得九完成签到 ,获得积分10
9秒前
听风完成签到,获得积分10
9秒前
EMMA完成签到,获得积分10
10秒前
wgt完成签到,获得积分10
10秒前
jstagey完成签到,获得积分10
10秒前
HCQ完成签到,获得积分10
10秒前
zy完成签到,获得积分10
11秒前
11秒前
夜阑卧听完成签到,获得积分0
11秒前
彩色海冬完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568452
求助须知:如何正确求助?哪些是违规求助? 4653069
关于积分的说明 14703693
捐赠科研通 4594883
什么是DOI,文献DOI怎么找? 2521327
邀请新用户注册赠送积分活动 1492973
关于科研通互助平台的介绍 1463778