Deep Supervised Dual Cycle Adversarial Network for Cross-Modal Retrieval

计算机科学 人工智能 判别式 模态(人机交互) 情态动词 特征(语言学) 语义学(计算机科学) 特征学习 代表(政治) 模式识别(心理学) 相似性(几何) 自然语言处理 语义相似性 特征提取 情报检索 机器学习 图像(数学) 语言学 化学 哲学 政治 政治学 高分子化学 法学 程序设计语言
作者
Lei Liao,Meng Yang,Bob Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 920-934 被引量:9
标识
DOI:10.1109/tcsvt.2022.3203247
摘要

Cross-modal retrieval tasks, which are more natural and challenging than traditional retrieval tasks, have attracted increasing interest from researchers in recent years. Although different modalities with the same semantics have some potential relevance, the feature space heterogeneity still seriously weakens the performance of cross-modal retrieval models. To solve this problem, common space-based methods in which multimodal data is projected into a learned common space for similarity measurement have become the mainstream approach for cross-modal retrieval tasks. However, current methods entangle the modality style and semantic content in the common space and neglect to fully explore the semantic and discriminative representation/reconstruction of the semantic content. This often results in an unsatisfactory retrieval performance. To solve these issues, this paper proposes a new Deep Supervised Dual Cycle Adversarial Network (DSDCAN) model based on common space learning. It is composed of two cross-modal cycle GANs, one for the image and one for the text. The proposed cycle GAN model disentangles the semantic content and modality style features by making the data of one modality well reconstructed from the extracted modal style feature and the content feature of the other modality. Then, a discriminative semantic and label loss is proposed by fully considering the category, sample contrast, and label supervision to enhance the semantic discrimination of the common space representation. Besides this, to make the data distribution between two modalities similar, a second-order similarity is presented as a distance measurement of the cross-modal representation in the common space. Extensive experiments have been conducted on the Wikipedia, Pascal Sentence, NUS-WIDE-10k, PKU XMedia, MSCOCO, NUS-WIDE, Flickr30k and MIRFlickr datasets. The results demonstrate that the proposed method can achieve a higher performance than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棒棒糖完成签到,获得积分10
刚刚
小乐儿~完成签到,获得积分10
刚刚
闪闪未来发布了新的文献求助10
1秒前
封志泽应助liusui采纳,获得10
1秒前
Ava应助菠萝炒饭采纳,获得30
1秒前
科研通AI2S应助Leeanyq采纳,获得10
1秒前
WD发布了新的文献求助20
1秒前
2秒前
小蘑菇应助eugeneZ采纳,获得10
3秒前
3秒前
可爱的函函应助小小酥采纳,获得10
3秒前
坚定奇迹发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
4秒前
YC_Kao完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小巧初柔发布了新的文献求助10
6秒前
7秒前
烟花应助LINHAI采纳,获得10
7秒前
real发布了新的文献求助10
7秒前
7秒前
cc完成签到 ,获得积分10
8秒前
英姑应助juju采纳,获得10
8秒前
8秒前
9秒前
9秒前
fei发布了新的文献求助10
10秒前
10秒前
11秒前
alice完成签到,获得积分10
11秒前
北海qy完成签到,获得积分10
11秒前
ilzhuzhu发布了新的文献求助10
11秒前
12秒前
Owen应助秦淮采纳,获得10
12秒前
weiwei发布了新的文献求助10
13秒前
大个应助cuntjx采纳,获得10
13秒前
田様应助loomsis采纳,获得10
13秒前
Fryanto发布了新的文献求助30
13秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128459
求助须知:如何正确求助?哪些是违规求助? 2779294
关于积分的说明 7742313
捐赠科研通 2434533
什么是DOI,文献DOI怎么找? 1293576
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514