已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Supervised Dual Cycle Adversarial Network for Cross-Modal Retrieval

计算机科学 人工智能 判别式 模态(人机交互) 情态动词 特征(语言学) 语义学(计算机科学) 特征学习 代表(政治) 模式识别(心理学) 相似性(几何) 自然语言处理 语义相似性 特征提取 情报检索 机器学习 图像(数学) 哲学 政治学 化学 高分子化学 程序设计语言 法学 政治 语言学
作者
Lei Liao,Meng Yang,Bob Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 920-934 被引量:18
标识
DOI:10.1109/tcsvt.2022.3203247
摘要

Cross-modal retrieval tasks, which are more natural and challenging than traditional retrieval tasks, have attracted increasing interest from researchers in recent years. Although different modalities with the same semantics have some potential relevance, the feature space heterogeneity still seriously weakens the performance of cross-modal retrieval models. To solve this problem, common space-based methods in which multimodal data is projected into a learned common space for similarity measurement have become the mainstream approach for cross-modal retrieval tasks. However, current methods entangle the modality style and semantic content in the common space and neglect to fully explore the semantic and discriminative representation/reconstruction of the semantic content. This often results in an unsatisfactory retrieval performance. To solve these issues, this paper proposes a new Deep Supervised Dual Cycle Adversarial Network (DSDCAN) model based on common space learning. It is composed of two cross-modal cycle GANs, one for the image and one for the text. The proposed cycle GAN model disentangles the semantic content and modality style features by making the data of one modality well reconstructed from the extracted modal style feature and the content feature of the other modality. Then, a discriminative semantic and label loss is proposed by fully considering the category, sample contrast, and label supervision to enhance the semantic discrimination of the common space representation. Besides this, to make the data distribution between two modalities similar, a second-order similarity is presented as a distance measurement of the cross-modal representation in the common space. Extensive experiments have been conducted on the Wikipedia, Pascal Sentence, NUS-WIDE-10k, PKU XMedia, MSCOCO, NUS-WIDE, Flickr30k and MIRFlickr datasets. The results demonstrate that the proposed method can achieve a higher performance than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
希捷方向发布了新的文献求助10
4秒前
顾矜应助cfv采纳,获得10
4秒前
打打应助1111111111111采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
xhz843完成签到 ,获得积分10
12秒前
爹爹发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
11111发布了新的文献求助10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
Fancy应助科研通管家采纳,获得20
15秒前
华仔应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
柠檬酸发布了新的文献求助10
15秒前
16秒前
16秒前
wzx发布了新的文献求助10
18秒前
19秒前
liuz完成签到,获得积分0
19秒前
小风完成签到 ,获得积分10
20秒前
桐桐应助11111采纳,获得10
20秒前
20秒前
21秒前
深情安青应助快点喝奶茶采纳,获得10
21秒前
科研通AI2S应助GU采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770