Deep Supervised Dual Cycle Adversarial Network for Cross-Modal Retrieval

计算机科学 人工智能 判别式 模态(人机交互) 情态动词 特征(语言学) 语义学(计算机科学) 特征学习 代表(政治) 模式识别(心理学) 相似性(几何) 自然语言处理 语义相似性 特征提取 情报检索 机器学习 图像(数学) 哲学 政治学 化学 高分子化学 程序设计语言 法学 政治 语言学
作者
Lei Liao,Meng Yang,Bob Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 920-934 被引量:18
标识
DOI:10.1109/tcsvt.2022.3203247
摘要

Cross-modal retrieval tasks, which are more natural and challenging than traditional retrieval tasks, have attracted increasing interest from researchers in recent years. Although different modalities with the same semantics have some potential relevance, the feature space heterogeneity still seriously weakens the performance of cross-modal retrieval models. To solve this problem, common space-based methods in which multimodal data is projected into a learned common space for similarity measurement have become the mainstream approach for cross-modal retrieval tasks. However, current methods entangle the modality style and semantic content in the common space and neglect to fully explore the semantic and discriminative representation/reconstruction of the semantic content. This often results in an unsatisfactory retrieval performance. To solve these issues, this paper proposes a new Deep Supervised Dual Cycle Adversarial Network (DSDCAN) model based on common space learning. It is composed of two cross-modal cycle GANs, one for the image and one for the text. The proposed cycle GAN model disentangles the semantic content and modality style features by making the data of one modality well reconstructed from the extracted modal style feature and the content feature of the other modality. Then, a discriminative semantic and label loss is proposed by fully considering the category, sample contrast, and label supervision to enhance the semantic discrimination of the common space representation. Besides this, to make the data distribution between two modalities similar, a second-order similarity is presented as a distance measurement of the cross-modal representation in the common space. Extensive experiments have been conducted on the Wikipedia, Pascal Sentence, NUS-WIDE-10k, PKU XMedia, MSCOCO, NUS-WIDE, Flickr30k and MIRFlickr datasets. The results demonstrate that the proposed method can achieve a higher performance than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心夏旋发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
刘耀威完成签到,获得积分20
3秒前
啦11发布了新的文献求助10
3秒前
3秒前
4秒前
传奇3应助浮云采纳,获得10
4秒前
4秒前
情怀应助玩命的糖豆采纳,获得10
4秒前
4秒前
酷波er应助清新的秋白采纳,获得10
4秒前
元谷雪发布了新的文献求助10
5秒前
whiteside完成签到,获得积分10
5秒前
6秒前
Andd发布了新的文献求助10
6秒前
7秒前
植物园完成签到,获得积分10
8秒前
8秒前
ruirui发布了新的文献求助30
8秒前
无花果应助QP采纳,获得10
8秒前
曾经友琴发布了新的文献求助10
8秒前
复杂访冬发布了新的文献求助10
9秒前
左秋白发布了新的文献求助10
9秒前
whiteside发布了新的文献求助10
9秒前
保藏完成签到,获得积分10
9秒前
坚强金鱼发布了新的文献求助10
9秒前
9秒前
tph发布了新的文献求助10
9秒前
牛马完成签到,获得积分10
10秒前
10秒前
10秒前
丰泽园完成签到,获得积分10
11秒前
时光宝石一次完成签到,获得积分10
11秒前
迷人雪一发布了新的文献求助10
12秒前
乐观的素阴完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420