亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 生物 内科学 古生物学
作者
Huihua Huang,Zheng Dan,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:5
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助帅气的藏鸟采纳,获得10
4秒前
17秒前
22秒前
32秒前
无花果应助优雅的听兰采纳,获得10
32秒前
好巧发布了新的文献求助10
36秒前
丘比特应助桑姊采纳,获得10
39秒前
大方的从寒完成签到,获得积分20
48秒前
50秒前
52秒前
55秒前
58秒前
优雅的听兰完成签到,获得积分20
1分钟前
1分钟前
桃子爱学习完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
科研通AI2S应助牟白容采纳,获得10
2分钟前
烟花应助堆起的石头采纳,获得10
3分钟前
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
桑姊发布了新的文献求助10
3分钟前
3分钟前
123完成签到,获得积分10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
君寻完成签到 ,获得积分10
3分钟前
山止川行完成签到 ,获得积分10
3分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
4分钟前
烟花应助科研通管家采纳,获得10
5分钟前
英姑应助科研通管家采纳,获得10
5分钟前
桑姊完成签到,获得积分20
5分钟前
明亮的冰香完成签到 ,获得积分10
5分钟前
snah完成签到 ,获得积分10
5分钟前
以菱完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
WM完成签到,获得积分20
6分钟前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219760
求助须知:如何正确求助?哪些是违规求助? 2868493
关于积分的说明 8161157
捐赠科研通 2535510
什么是DOI,文献DOI怎么找? 1368074
科研通“疑难数据库(出版商)”最低求助积分说明 645127
邀请新用户注册赠送积分活动 618477