Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 古生物学 内科学 生物
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:13
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助学习新思想采纳,获得10
1秒前
ding应助一区发十篇采纳,获得10
1秒前
赫贞发布了新的文献求助10
2秒前
超级的鞅发布了新的文献求助10
3秒前
Lucas应助彩色元瑶采纳,获得10
3秒前
贝博完成签到,获得积分10
3秒前
吹吹完成签到,获得积分10
4秒前
4秒前
5秒前
领导范儿应助煎饼煎饼采纳,获得10
6秒前
儒雅惜筠完成签到,获得积分10
7秒前
10秒前
10秒前
鸭子发布了新的文献求助10
10秒前
领导范儿应助儒雅惜筠采纳,获得10
12秒前
13秒前
13秒前
舒心思雁完成签到,获得积分10
13秒前
甄水瑶发布了新的文献求助10
14秒前
JamesPei应助超级的鞅采纳,获得10
14秒前
科研小白发布了新的文献求助10
15秒前
15秒前
一区发十篇完成签到,获得积分20
17秒前
大桶水果茶完成签到,获得积分10
17秒前
hanry发布了新的文献求助10
18秒前
晴天完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
Dsunflower完成签到 ,获得积分10
20秒前
浮游应助开心青曼采纳,获得10
20秒前
20秒前
所所应助666采纳,获得30
22秒前
22秒前
小蛤蟆完成签到 ,获得积分10
23秒前
科研小白发布了新的文献求助10
25秒前
27秒前
Wzf完成签到 ,获得积分10
27秒前
28秒前
NY完成签到,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215394
求助须知:如何正确求助?哪些是违规求助? 4390543
关于积分的说明 13670192
捐赠科研通 4252424
什么是DOI,文献DOI怎么找? 2333060
邀请新用户注册赠送积分活动 1330703
关于科研通互助平台的介绍 1284510