亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 古生物学 内科学 生物
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:13
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
47秒前
冷傲半邪完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
123完成签到,获得积分20
2分钟前
123发布了新的文献求助10
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
STAR完成签到,获得积分10
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
月下荷花完成签到 ,获得积分10
4分钟前
5分钟前
星际舟完成签到,获得积分10
5分钟前
半青一江完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得20
6分钟前
6分钟前
6分钟前
缓慢煎蛋发布了新的文献求助100
6分钟前
7分钟前
缓慢煎蛋完成签到,获得积分10
7分钟前
laohei94_6完成签到 ,获得积分10
7分钟前
Criminology34应助科研通管家采纳,获得10
8分钟前
Criminology34应助科研通管家采纳,获得10
8分钟前
深情安青应助科研通管家采纳,获得10
8分钟前
量子星尘发布了新的文献求助20
8分钟前
tingalan完成签到,获得积分0
9分钟前
在水一方应助细心水绿采纳,获得10
9分钟前
10分钟前
细心水绿发布了新的文献求助10
10分钟前
小二郎应助404NotFOUND采纳,获得30
10分钟前
Krim完成签到 ,获得积分0
11分钟前
摘星012完成签到 ,获得积分10
11分钟前
凤里完成签到 ,获得积分10
11分钟前
xwz626完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4870368
求助须知:如何正确求助?哪些是违规求助? 4160923
关于积分的说明 12902355
捐赠科研通 3916213
什么是DOI,文献DOI怎么找? 2150720
邀请新用户注册赠送积分活动 1169079
关于科研通互助平台的介绍 1072418