已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 生物 内科学 古生物学
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:7
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃宝儿完成签到,获得积分10
1秒前
2秒前
su完成签到 ,获得积分10
3秒前
立夏完成签到,获得积分10
7秒前
阳光的灵竹完成签到,获得积分10
10秒前
雪白的如天完成签到 ,获得积分10
12秒前
自渡完成签到 ,获得积分10
14秒前
16秒前
20秒前
小蘑菇应助zy95282采纳,获得10
21秒前
谦让寒云完成签到 ,获得积分10
24秒前
里昂义务发布了新的文献求助10
25秒前
光亮静槐完成签到 ,获得积分10
25秒前
28秒前
kbcbwb2002完成签到,获得积分10
29秒前
友好冥王星完成签到 ,获得积分10
30秒前
默默白桃完成签到 ,获得积分10
31秒前
FEI完成签到,获得积分10
33秒前
livialiu发布了新的文献求助30
33秒前
千倾完成签到 ,获得积分10
38秒前
黯然完成签到 ,获得积分10
38秒前
38秒前
Carolchen发布了新的文献求助10
40秒前
研友_ZG4ml8完成签到 ,获得积分10
41秒前
苏小北完成签到 ,获得积分10
43秒前
shweah2003完成签到,获得积分0
45秒前
文静灵阳完成签到 ,获得积分10
49秒前
热心的棒棒糖完成签到 ,获得积分10
50秒前
李健应助早岁采纳,获得10
50秒前
小凯完成签到 ,获得积分10
50秒前
wch666完成签到,获得积分20
52秒前
livialiu完成签到,获得积分10
52秒前
传奇3应助luyao970131采纳,获得10
52秒前
从容甜瓜完成签到 ,获得积分10
54秒前
张静枝完成签到 ,获得积分10
56秒前
livialiu发布了新的文献求助10
56秒前
gwh完成签到 ,获得积分10
57秒前
爆米花应助read采纳,获得10
58秒前
1分钟前
luster完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994745
求助须知:如何正确求助?哪些是违规求助? 3534958
关于积分的说明 11266887
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762