已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 古生物学 内科学 生物
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:13
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迂鱼语郁完成签到 ,获得积分10
1秒前
2秒前
2秒前
薰衣草发布了新的文献求助20
2秒前
大个应助123456采纳,获得10
2秒前
汉堡包应助jason0023采纳,获得10
2秒前
科研废柴发布了新的文献求助10
4秒前
漂亮香芦完成签到,获得积分10
5秒前
英俊的铭应助隐形盼海采纳,获得10
10秒前
10秒前
英姑应助蓝莓小蛋糕采纳,获得10
11秒前
SONGREN发布了新的文献求助10
14秒前
qiandi完成签到 ,获得积分10
15秒前
科目三应助科研通管家采纳,获得30
16秒前
Orange应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
华仔应助小贤采纳,获得10
21秒前
Ty完成签到,获得积分10
23秒前
24秒前
理塘大学士完成签到,获得积分10
25秒前
27秒前
27秒前
米酒汤圆发布了新的文献求助30
28秒前
深情幻巧完成签到,获得积分10
28秒前
光亮秋白完成签到,获得积分10
29秒前
星空棒棒糖完成签到 ,获得积分10
31秒前
ding应助SONGREN采纳,获得10
32秒前
32秒前
漂亮香芦发布了新的文献求助10
32秒前
chris发布了新的文献求助20
34秒前
34秒前
luoshi94完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339