Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 古生物学 内科学 生物
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:7
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kento发布了新的文献求助80
2秒前
llm发布了新的文献求助20
4秒前
7秒前
7秒前
执着的寄凡完成签到,获得积分10
8秒前
豆腐干豆腐干是法国完成签到,获得积分20
9秒前
桃子发布了新的文献求助10
11秒前
11秒前
11秒前
6666发布了新的文献求助10
12秒前
13秒前
13秒前
阿秃发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
柔弱山菡完成签到 ,获得积分10
15秒前
swy发布了新的文献求助10
16秒前
虫子发布了新的文献求助10
17秒前
高兴冰双完成签到,获得积分10
17秒前
17秒前
和平发展完成签到,获得积分10
17秒前
18秒前
wanci应助难过的谷芹采纳,获得10
18秒前
yanganqi发布了新的文献求助10
19秒前
XCL应助清脆仙人掌采纳,获得10
20秒前
张i鹅发布了新的文献求助10
20秒前
21秒前
柳亦诚应助swy采纳,获得10
21秒前
子车茗应助swy采纳,获得10
21秒前
合适鲂完成签到,获得积分10
22秒前
子车茗应助自信的一兰采纳,获得10
22秒前
22秒前
24秒前
中森明菜发布了新的文献求助10
24秒前
闪闪的怀蝶完成签到,获得积分10
25秒前
26秒前
忐忑的蛋糕完成签到,获得积分10
27秒前
活力老少女完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537634
求助须知:如何正确求助?哪些是违规求助? 3972559
关于积分的说明 12306211
捐赠科研通 3639257
什么是DOI,文献DOI怎么找? 2003762
邀请新用户注册赠送积分活动 1039127
科研通“疑难数据库(出版商)”最低求助积分说明 928535