Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma

人工智能 深度学习 计算机科学 阶段(地层学) 基本事实 接收机工作特性 腺癌 放射科 机器学习 医学 癌症 古生物学 内科学 生物
作者
Haozhe Huang,Dezhong Zheng,Hong Chen,Ying Wang,Chao Chen,Lichao Xu,Guodong Li,Yaohui Wang,Xinhong He,Wentao Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6384-6394 被引量:13
标识
DOI:10.1002/mp.15903
摘要

To develop a novel multimodal data fusion model by incorporating computed tomography (CT) images and clinical variables based on deep learning for predicting the invasiveness risk of stage I lung adenocarcinoma that manifests as ground-glass nodules (GGNs) and compare the diagnostic performance of it with that of radiologists.A total of 1946 patients with solitary and histopathologically confirmed GGNs with maximum diameter less than 3 cm were retrospectively enrolled. The training dataset containing 1704 GGNs was augmented by resampling, scaling, random cropping, and so forth, to generate new training data. A multimodal data fusion model based on residual learning architecture and two multilayer perceptron with attention mechanism combining CT images with patient general data and serum tumor markers was built. The distance-based confidence scores (DCS) were calculated and compared among multimodal data models with different combinations. An observer study was conducted and the prediction performance of the fusion algorithms was compared with that of the two radiologists by an independent testing dataset with 242 GGNs.Among the whole GGNs, 606 GGNs are confirmed as invasive adenocarcinoma (IA) and 1340 are non-IA. The proposed novel multimodal data fusion model combining CT images, patient general data, and serum tumor markers achieved the highest accuracy (88.5%), area under a ROC curve (0.957), F1 (81.5%), F1weighted (81.9%), and Matthews correlation coefficient (73.2%) for classifying between IA and non-IA GGNs, which was even better than the senior radiologist's performance (accuracy, 86.1%). In addition, the DCSs for multimodal data suggested that CT image had a stronger influence (0.9540) quantitatively than general data (0.6726) or tumor marker (0.6971).This study demonstrated that the feasibility of integrating different types of data including CT images and clinical variables, and the multimodal data fusion model yielded higher performance for distinguishing IA from non-IA GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助灵巧晓亦采纳,获得10
刚刚
木几木几发布了新的文献求助30
刚刚
风衣拖地完成签到 ,获得积分10
1秒前
1秒前
方老师完成签到,获得积分10
1秒前
彩色的笑旋完成签到,获得积分20
1秒前
wanci应助干净士晋采纳,获得10
2秒前
做好自己发布了新的文献求助10
2秒前
狗宅发布了新的文献求助10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
skyscraper完成签到,获得积分10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得150
5秒前
精明幻悲发布了新的文献求助10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
兰瓜瓜完成签到,获得积分10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
唐泽雪穗应助tczw667采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
zcl应助科研通管家采纳,获得150
6秒前
英姑应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
7秒前
Yi发布了新的文献求助10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Orange应助齐平露采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590