Direct relation detection for knowledge-based question answering

关系(数据库) 计算机科学 关系抽取 人工智能 答疑 模棱两可 谓词(数理逻辑) 抽象 目标检测 任务(项目管理) 模式识别(心理学) 数据挖掘 自然语言处理 机器学习 哲学 管理 认识论 经济 程序设计语言
作者
Abbas Shahini Shamsabadi,Reza Ramezani,Hadi Khosravi Farsani,Mohammad Ali Nematbakhsh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118678-118678 被引量:8
标识
DOI:10.1016/j.eswa.2022.118678
摘要

This study addresses the problem of relation detection for answering single-relation factoid questions over knowledge bases (KBs). In this kind of questions, the answer is obtained from a single KB fact in the form of subject-predicate-object. Conventional fact extraction methods have two steps: entity linking and relation detection, in which the output of the entity linking is used by the relation detection step to first find candidate relations, and then choose the best relation from candidate relations. Such methods have difficulties with the relation detection if there is an error or ambiguity in the entity linking step. This paper explores the relation detection task without the entity-linking step utilizing the hierarchical structure of relations and an out-of-box POS tagger. As relations are of different levels of abstraction, the proposed solution uses multiple classifiers in pipeline, each of which uses separate BiGRU neural networks fed with questions embedded with one-hot encoding at the character level. Besides, to increase the accuracy of the proposed model and to avoid the need for large amounts of training data, after each word of the question, its POS tag is inserted before feeding the network. The experimental results show that the accuracy of the proposed solution for the direct relation detection is 89.5%. In addition, the proposed solution can be used for the indirect relation detection whose accuracy is 96.3%, which is higher than state-of-the-art relation detection techniques. Finally, the positive effects of using POS tags have been examined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
嘉子完成签到,获得积分10
2秒前
2秒前
饱满从蕾发布了新的文献求助10
2秒前
古月完成签到 ,获得积分10
3秒前
kpzwov完成签到,获得积分10
3秒前
3秒前
整齐听枫发布了新的文献求助10
5秒前
7秒前
香蕉觅云应助臭臭采纳,获得10
7秒前
yz发布了新的文献求助10
8秒前
七月完成签到,获得积分10
10秒前
乐观香寒完成签到,获得积分10
10秒前
likun_42完成签到,获得积分10
11秒前
刘陌陌完成签到,获得积分10
11秒前
赵乂发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
大辣娇发布了新的文献求助10
15秒前
16秒前
wanci应助神勇的青亦采纳,获得10
18秒前
ding应助七月采纳,获得10
19秒前
20秒前
爆米花应助潇洒的擎苍采纳,获得10
22秒前
22秒前
23秒前
yz完成签到,获得积分10
23秒前
Gauss应助吃人陈采纳,获得30
24秒前
gui发布了新的文献求助10
25秒前
yz发布了新的文献求助10
26秒前
26秒前
yyzhou应助科研通管家采纳,获得20
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
子车茗应助科研通管家采纳,获得20
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
陈晨完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370