Direct relation detection for knowledge-based question answering

关系(数据库) 计算机科学 关系抽取 人工智能 答疑 模棱两可 谓词(数理逻辑) 抽象 目标检测 任务(项目管理) 模式识别(心理学) 数据挖掘 自然语言处理 机器学习 哲学 经济 管理 程序设计语言 认识论
作者
Abbas Shahini Shamsabadi,Reza Ramezani,Hadi Khosravi Farsani,Mohammad Ali Nematbakhsh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118678-118678 被引量:8
标识
DOI:10.1016/j.eswa.2022.118678
摘要

This study addresses the problem of relation detection for answering single-relation factoid questions over knowledge bases (KBs). In this kind of questions, the answer is obtained from a single KB fact in the form of subject-predicate-object. Conventional fact extraction methods have two steps: entity linking and relation detection, in which the output of the entity linking is used by the relation detection step to first find candidate relations, and then choose the best relation from candidate relations. Such methods have difficulties with the relation detection if there is an error or ambiguity in the entity linking step. This paper explores the relation detection task without the entity-linking step utilizing the hierarchical structure of relations and an out-of-box POS tagger. As relations are of different levels of abstraction, the proposed solution uses multiple classifiers in pipeline, each of which uses separate BiGRU neural networks fed with questions embedded with one-hot encoding at the character level. Besides, to increase the accuracy of the proposed model and to avoid the need for large amounts of training data, after each word of the question, its POS tag is inserted before feeding the network. The experimental results show that the accuracy of the proposed solution for the direct relation detection is 89.5%. In addition, the proposed solution can be used for the indirect relation detection whose accuracy is 96.3%, which is higher than state-of-the-art relation detection techniques. Finally, the positive effects of using POS tags have been examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观笑南发布了新的文献求助10
1秒前
科研通AI6应助权志龙采纳,获得10
1秒前
科研通AI6应助愉快无心采纳,获得10
1秒前
hui完成签到 ,获得积分10
2秒前
Wang发布了新的文献求助10
2秒前
大个应助BINGBING1230采纳,获得10
2秒前
张公子完成签到,获得积分10
2秒前
2秒前
852应助凡不凡人采纳,获得10
3秒前
煎炒焖煮炸培根完成签到,获得积分10
4秒前
科研通AI6应助mikasa采纳,获得10
4秒前
葱葱花卷完成签到 ,获得积分10
4秒前
科研通AI6应助liang2508采纳,获得10
5秒前
核桃应助Dio采纳,获得50
5秒前
在水一方应助跳江的猫采纳,获得10
5秒前
Jasper应助香菜碗里来采纳,获得10
5秒前
汉堡包应助肥波采纳,获得10
6秒前
6秒前
CipherSage应助channing采纳,获得10
7秒前
小二郎应助刘窜疯采纳,获得10
9秒前
9秒前
10秒前
10秒前
充电宝应助Wang采纳,获得10
11秒前
李健应助钟小凯采纳,获得30
11秒前
年轻灯泡完成签到,获得积分10
12秒前
闪闪的斌发布了新的文献求助10
12秒前
Orange应助蓝精灵采纳,获得10
13秒前
mmm完成签到,获得积分10
13秒前
打打应助乐观笑南采纳,获得10
13秒前
健忘的夜阑完成签到,获得积分10
14秒前
L91发布了新的文献求助10
15秒前
子怡发布了新的文献求助10
16秒前
科西西完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
19秒前
ding应助余浅儿采纳,获得10
19秒前
学无止境完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394047
求助须知:如何正确求助?哪些是违规求助? 4515419
关于积分的说明 14053732
捐赠科研通 4426550
什么是DOI,文献DOI怎么找? 2431454
邀请新用户注册赠送积分活动 1423549
关于科研通互助平台的介绍 1402541