亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Direct relation detection for knowledge-based question answering

关系(数据库) 计算机科学 关系抽取 人工智能 答疑 模棱两可 谓词(数理逻辑) 抽象 目标检测 任务(项目管理) 模式识别(心理学) 数据挖掘 自然语言处理 机器学习 哲学 经济 管理 程序设计语言 认识论
作者
Abbas Shahini Shamsabadi,Reza Ramezani,Hadi Khosravi Farsani,Mohammad Ali Nematbakhsh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118678-118678 被引量:8
标识
DOI:10.1016/j.eswa.2022.118678
摘要

This study addresses the problem of relation detection for answering single-relation factoid questions over knowledge bases (KBs). In this kind of questions, the answer is obtained from a single KB fact in the form of subject-predicate-object. Conventional fact extraction methods have two steps: entity linking and relation detection, in which the output of the entity linking is used by the relation detection step to first find candidate relations, and then choose the best relation from candidate relations. Such methods have difficulties with the relation detection if there is an error or ambiguity in the entity linking step. This paper explores the relation detection task without the entity-linking step utilizing the hierarchical structure of relations and an out-of-box POS tagger. As relations are of different levels of abstraction, the proposed solution uses multiple classifiers in pipeline, each of which uses separate BiGRU neural networks fed with questions embedded with one-hot encoding at the character level. Besides, to increase the accuracy of the proposed model and to avoid the need for large amounts of training data, after each word of the question, its POS tag is inserted before feeding the network. The experimental results show that the accuracy of the proposed solution for the direct relation detection is 89.5%. In addition, the proposed solution can be used for the indirect relation detection whose accuracy is 96.3%, which is higher than state-of-the-art relation detection techniques. Finally, the positive effects of using POS tags have been examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jeongin完成签到,获得积分10
15秒前
cadcae完成签到,获得积分10
45秒前
gentleman完成签到,获得积分10
47秒前
英喆完成签到 ,获得积分10
50秒前
搬砖王完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
小榕树发布了新的文献求助30
1分钟前
1分钟前
1分钟前
欢呼的续发布了新的文献求助30
1分钟前
洒脱完成签到,获得积分10
1分钟前
xyx发布了新的文献求助10
1分钟前
NexusExplorer应助111采纳,获得10
1分钟前
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
小榕树完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
CipherSage应助科研通管家采纳,获得30
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
YY完成签到,获得积分20
2分钟前
zgx完成签到 ,获得积分10
3分钟前
CC完成签到,获得积分10
3分钟前
3分钟前
一梦发布了新的文献求助10
3分钟前
一梦完成签到,获得积分10
3分钟前
欢呼的续关注了科研通微信公众号
3分钟前
量子星尘发布了新的文献求助10
4分钟前
成就灵波完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得30
4分钟前
alex_zhao完成签到,获得积分10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015226
求助须知:如何正确求助?哪些是违规求助? 3555175
关于积分的说明 11317925
捐赠科研通 3288594
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983