Direct relation detection for knowledge-based question answering

关系(数据库) 计算机科学 关系抽取 人工智能 答疑 模棱两可 谓词(数理逻辑) 抽象 目标检测 任务(项目管理) 模式识别(心理学) 数据挖掘 自然语言处理 机器学习 哲学 管理 认识论 经济 程序设计语言
作者
Abbas Shahini Shamsabadi,Reza Ramezani,Hadi Khosravi Farsani,Mohammad Ali Nematbakhsh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118678-118678 被引量:8
标识
DOI:10.1016/j.eswa.2022.118678
摘要

This study addresses the problem of relation detection for answering single-relation factoid questions over knowledge bases (KBs). In this kind of questions, the answer is obtained from a single KB fact in the form of subject-predicate-object. Conventional fact extraction methods have two steps: entity linking and relation detection, in which the output of the entity linking is used by the relation detection step to first find candidate relations, and then choose the best relation from candidate relations. Such methods have difficulties with the relation detection if there is an error or ambiguity in the entity linking step. This paper explores the relation detection task without the entity-linking step utilizing the hierarchical structure of relations and an out-of-box POS tagger. As relations are of different levels of abstraction, the proposed solution uses multiple classifiers in pipeline, each of which uses separate BiGRU neural networks fed with questions embedded with one-hot encoding at the character level. Besides, to increase the accuracy of the proposed model and to avoid the need for large amounts of training data, after each word of the question, its POS tag is inserted before feeding the network. The experimental results show that the accuracy of the proposed solution for the direct relation detection is 89.5%. In addition, the proposed solution can be used for the indirect relation detection whose accuracy is 96.3%, which is higher than state-of-the-art relation detection techniques. Finally, the positive effects of using POS tags have been examined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓦然发布了新的文献求助10
1秒前
1秒前
YCG完成签到 ,获得积分10
2秒前
竹筏过海应助淡然天问采纳,获得30
2秒前
浮游应助淡然天问采纳,获得10
2秒前
领导范儿应助柔弱的冬天采纳,获得30
3秒前
落后翠柏发布了新的文献求助10
4秒前
不安的成协完成签到,获得积分10
5秒前
5秒前
6秒前
长情听南发布了新的文献求助10
7秒前
锦慜发布了新的文献求助10
7秒前
顾矜应助蓦然采纳,获得10
8秒前
可爱的函函应助panda采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
李昕123发布了新的文献求助10
9秒前
9秒前
吧唧完成签到,获得积分10
10秒前
123456完成签到,获得积分10
11秒前
大模型应助wjy321采纳,获得10
11秒前
云漫山发布了新的文献求助10
11秒前
Ruby应助jsss采纳,获得10
12秒前
12秒前
13秒前
wise111发布了新的文献求助30
13秒前
尊敬的小凡完成签到,获得积分10
13秒前
xbx1991发布了新的文献求助30
13秒前
充电宝应助阿良采纳,获得10
15秒前
自信大白菜真实的钥匙完成签到,获得积分10
15秒前
wyh应助活泼溪流采纳,获得30
15秒前
李昕123完成签到,获得积分10
16秒前
16秒前
刺五加完成签到 ,获得积分10
17秒前
852应助Eom采纳,获得10
17秒前
18秒前
18秒前
caoyuya123完成签到 ,获得积分10
18秒前
19秒前
20秒前
风清扬发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704