A multi-scale multi-model deep neural network via ensemble strategy on high-throughput microscopy image for protein subcellular localization

亚细胞定位 计算机科学 人工智能 卷积神经网络 蛋白质亚细胞定位预测 模式识别(心理学) 联营 人工神经网络 深度学习 特征(语言学) 吞吐量 生物 细胞质 基因 哲学 电信 生物化学 无线 语言学
作者
Jiaqi Ding,Junhai Xu,Jianguo Wei,Jijun Tang,Fei Guo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118744-118744 被引量:7
标识
DOI:10.1016/j.eswa.2022.118744
摘要

Protein subcellular locations are closely related to the function of proteins. By detecting the abnormalities in subcellular locations, we can infer the occurrence of some diseases and mine new drug targets. A large number of single-cell high-throughput microscopy images provide us with relevant resources for studying protein distribution patterns. However, in the existing image-based protein subcellular localization methods, the traditional techniques are lack of efficiency and accuracy, and the potential of deep learning methods has not been fully tapped. So in this study, we propose a multi-scale multi-model deep neural network via ensemble strategy for protein subcellular localization on single-cell high-throughput images. First of all, we employ a deep convolutional neural network as multi-scale feature extractor and use global average pooling to map extracted features at different stages into feature vectors, then concatenate these multi-scale features to form a multi-model structure for image classification. In addition, we add Squeeze-and-Excitation Blocks to the network to emphasize more informative features. What is more, we use an ensemble method to fuse the classification results from the multi-model structure to obtain the final subcellular location of each single-cell image. Experiments show the validity and effectiveness of our method on yeast cell images, it can significantly improve the accuracy of high-throughput microscopy image-based protein subcellular localization, and we achieve the classification accuracy of 0.9098 on the high-throughput microscopy images of yeast cells. In the work of protein subcellular localization, our method provides a framework for processing and classifying microscope images, and further lays the foundation for the study of protein and gene functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗咸蛋黄完成签到 ,获得积分20
1秒前
打打应助5477采纳,获得10
1秒前
灵巧坤发布了新的文献求助30
1秒前
1秒前
小猴完成签到,获得积分10
2秒前
Raymond应助NANA采纳,获得10
3秒前
Sean完成签到 ,获得积分10
3秒前
3秒前
无情山水发布了新的文献求助10
4秒前
锦纹完成签到,获得积分10
4秒前
南桥发布了新的文献求助10
4秒前
4秒前
伶俐的书白完成签到,获得积分10
5秒前
科研通AI5应助威武诺言采纳,获得10
5秒前
5秒前
LXL完成签到,获得积分10
5秒前
杳鸢应助三金采纳,获得20
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
英俊的铭应助yyj采纳,获得10
6秒前
SV发布了新的文献求助10
6秒前
7秒前
12发布了新的文献求助10
7秒前
JamesPei应助化学狗采纳,获得10
7秒前
胡图图发布了新的文献求助10
7秒前
8秒前
xm完成签到,获得积分10
9秒前
谦让的含海完成签到,获得积分10
9秒前
所所应助包容的剑采纳,获得10
9秒前
9秒前
10秒前
lynn_zhang发布了新的文献求助10
10秒前
11秒前
xh发布了新的文献求助10
11秒前
所所应助luoshi采纳,获得10
11秒前
飞龙在天完成签到 ,获得积分10
11秒前
深爱不疑完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762