Prompt-Based Prototypical Framework for Continual Relation Extraction

遗忘 杠杆(统计) 嵌入 计算机科学 关系(数据库) 关系抽取 任务(项目管理) 人工智能 过程(计算) 利用 自然语言处理 机器学习 数据挖掘 程序设计语言 工程类 心理学 认知心理学 系统工程 计算机安全
作者
Han Zhang,Bin Liang,Min Yang,Hui Wang,Ruifeng Xu
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2801-2813 被引量:5
标识
DOI:10.1109/taslp.2022.3199655
摘要

Continual relation extraction (CRE) is an important task of continual learning, which aims to learn incessantly emerging new relations between entities from texts. To avoid catastrophically forgetting old relations, some existing research efforts have focused on exploring memory replayed methods by storing typical historical learned instances or embedding all observed relations as prototypes in the episodic memory and replaying them in the subsequent training process. However, they generally fail to exploit the relation knowledge contained in the pre-trained language model (PLM), which could provide enlightening information to the representations of new relations from the known ones. To this end, we investigate the CRE from a novel perspective by generating knowledge-infused relation prototypes to leverage the relational knowledge from PLM with prompt tuning. Specifically, based on the typical samples collected from the historical learned instances with K-means algorithm, we devise novel relational knowledge-infused prompts to elicit relational knowledge from PLM for generating knowledge-infused relation prototypes. Then the prototypes are used to refine the typical examples embedding and calculate the stability-plasticity balance score for adjusting the memory replayed progress. The experimental results show that our method outperforms the state-of-the-art baseline models in CRE. The further extensive analysis presents that the proposed method is robust to memory size, task order, length of the task sequence, and the number of training instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nene完成签到 ,获得积分10
1秒前
无辜的雅旋完成签到,获得积分10
1秒前
荔枝面发布了新的文献求助10
1秒前
1秒前
刘佳慧完成签到 ,获得积分10
1秒前
大橙子完成签到,获得积分10
3秒前
big张发布了新的文献求助10
4秒前
勤奋的猪完成签到,获得积分10
4秒前
魅傲发布了新的文献求助10
4秒前
xhsz1111完成签到 ,获得积分10
5秒前
科研通AI5应助SPQR采纳,获得10
5秒前
5秒前
Ava应助祥子的骆驼采纳,获得10
5秒前
Lumi发布了新的文献求助10
5秒前
6秒前
11111完成签到,获得积分10
6秒前
今后应助背后的小白菜采纳,获得10
6秒前
星星完成签到,获得积分10
6秒前
瓜子壳完成签到,获得积分10
7秒前
所所应助叮咚采纳,获得10
7秒前
粘屁屁完成签到,获得积分10
7秒前
张yp完成签到,获得积分10
8秒前
8秒前
单身的钧发布了新的文献求助10
8秒前
领导范儿应助zjl采纳,获得10
9秒前
YY发布了新的文献求助10
9秒前
SciGPT应助雪山飞龙采纳,获得10
9秒前
英俊的啤酒完成签到,获得积分10
9秒前
10秒前
涔雨发布了新的文献求助10
11秒前
11秒前
Delight完成签到 ,获得积分10
12秒前
共享精神应助big张采纳,获得10
13秒前
江南小水龟完成签到,获得积分10
13秒前
Lumi完成签到,获得积分10
13秒前
淳于如雪发布了新的文献求助10
13秒前
pluto应助李伟峰采纳,获得10
13秒前
心灵美的洋葱完成签到,获得积分10
13秒前
天天快乐应助迅速可愁采纳,获得10
13秒前
orixero应助瓜子壳采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554496
求助须知:如何正确求助?哪些是违规求助? 3130339
关于积分的说明 9386331
捐赠科研通 2829627
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715484