Applications of deep learning in water quality management: A state-of-the-art review

水质 质量(理念) 国家(计算机科学) 计算机科学 环境科学 水文学(农业) 地质学 岩土工程 算法 生态学 生物 认识论 哲学
作者
Kok Poh Wai,Min Yan Chia,Chai Hoon Koo,Yuk Feng Huang,Woon Chan Chong
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:613: 128332-128332 被引量:51
标识
DOI:10.1016/j.jhydrol.2022.128332
摘要

• Water quality (WQ) management using deep learning (DL) approaches reviewed critically. • DL-based forecasting of WQ parameters reviewed for different water bodies. • Publications on hybrid DL models for WQ management assessed comprehensively. • Importance of the IoT and cloud computing towards DL-based WQ management outlined. Excellent water quality (WQ) is an indispensable element in ensuring sustainable water resource development. It is highly associated with the 3rd (good health and well-being), the 6th (clean water and sanitation), and the 14th (life below water) listed items of the United Nations’ Sustainable Development Goals. Thus, policymakers have always been seeking strategies to manage WQ efficiently. Recent advancements in computational technologies have created enthusiasm for using artificial intelligence, particularly deep learning (DL), in WQ management. This review provides a comprehensive overview of the application of DL in WQ management, covering developments from 2011 to 2022, in maintaining the temporal relevance of this review. In this paper, a brief description of different variants of DL models, including the recurrent neural network (RNN), long short-term memory network (LSTM), convolutional neural network (CNN), etc, are presented. The distinct approaches in the optimization, hybridization and relevant data pre-processing techniques suitable for the DL models, are also discussed. This is the first review paper that extensively discusses the application of DL models for forecasting WQ parameters in various water bodies, such as rivers, lakes, coastal areas, etc. The emergence of the Internet of Things (IoT) and cloud computing that revolutionized DL approaches in WQ management are also presented. This review paper serves as a complete easy guideline for the researchers in the field of DL-based WQ management. The findings of this review paper may help policymakers to enhance their decision-making process with the hope that regional environmental welfare can drastically be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzf发布了新的文献求助10
1秒前
pluto应助王359采纳,获得10
2秒前
WHH发布了新的文献求助10
2秒前
3秒前
LEI发布了新的文献求助10
4秒前
4秒前
余小琴完成签到 ,获得积分10
4秒前
隐形曼青应助欣喜的念芹采纳,获得10
6秒前
6秒前
7秒前
酷炫迎波完成签到,获得积分10
7秒前
8秒前
yly123完成签到,获得积分10
8秒前
WHH完成签到,获得积分10
8秒前
9秒前
11秒前
幻烨烨完成签到,获得积分10
11秒前
光亮的莺发布了新的文献求助10
12秒前
大脑袋应助zzf采纳,获得30
13秒前
13秒前
14秒前
zhang发布了新的文献求助10
14秒前
14秒前
欣喜的念芹完成签到,获得积分20
15秒前
玉婷完成签到,获得积分10
17秒前
神勇友灵完成签到,获得积分10
17秒前
CHyaa完成签到,获得积分10
17秒前
英姑应助摆烂研究牲采纳,获得10
17秒前
17秒前
17秒前
19秒前
jiao发布了新的文献求助10
20秒前
大气从安完成签到,获得积分10
20秒前
研友_VZG7GZ应助gengsumin采纳,获得10
21秒前
21秒前
孤独的狼发布了新的文献求助10
21秒前
xixi发布了新的文献求助30
21秒前
yly123发布了新的文献求助10
22秒前
22秒前
丸子_2025000完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296