已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification Prediction of Breast Cancer Based on Machine Learning

人工智能 计算机科学 随机森林 试验装置 逻辑回归 机器学习 乳腺癌 精确性和召回率 交叉验证 集合(抽象数据类型) 相关性 样本量测定 癌症 统计 数据挖掘 数学 医学 几何学 内科学 程序设计语言
作者
Hua Chen,Nan Wang,Xueping Du,Kehui Mei,Yuan Zhou,Guangxing Cai
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2023: 1-9 被引量:36
标识
DOI:10.1155/2023/6530719
摘要

Breast cancer is the most common and deadly type of cancer in the world. Based on machine learning algorithms such as XGBoost, random forest, logistic regression, and K-nearest neighbor, this paper establishes different models to classify and predict breast cancer, so as to provide a reference for the early diagnosis of breast cancer. Recall indicates the probability of detecting malignant cancer cells in medical diagnosis, which is of great significance for the classification of breast cancer, so this article takes recall as the primary evaluation index and considers the precision, accuracy, and F1-score evaluation indicators to evaluate and compare the prediction effect of each model. In order to eliminate the influence of different dimensional concepts on the effect of the model, the data are standardized. In order to find the optimal subset and improve the accuracy of the model, 15 features were screened out as input to the model through the Pearson correlation test. The K-nearest neighbor model uses the cross-validation method to select the optimal k value by using recall as an evaluation index. For the problem of positive and negative sample imbalance, the hierarchical sampling method is used to extract the training set and test set proportionally according to different categories. The experimental results show that under different dataset division (8 : 2 and 7 : 3), the prediction effect of the same model will have different changes. Comparative analysis shows that the XGBoost model established in this paper (which divides the training set and test set by 8 : 2) has better effects, and its recall, precision, accuracy, and F1-score are 1.00, 0.960, 0.974, and 0.980, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呼啦呼完成签到 ,获得积分10
刚刚
1秒前
sikaixue发布了新的文献求助10
1秒前
Ava应助小李骑士采纳,获得10
3秒前
Wishingyuuu发布了新的文献求助10
5秒前
楠楠2001完成签到 ,获得积分10
7秒前
温婉的夏烟完成签到 ,获得积分10
9秒前
行路难完成签到 ,获得积分10
11秒前
仔仔完成签到 ,获得积分10
11秒前
12秒前
12秒前
翻翻完成签到,获得积分10
15秒前
脏兮兮发布了新的文献求助10
16秒前
小李骑士发布了新的文献求助10
16秒前
慕青应助杨多多采纳,获得10
17秒前
科研通AI2S应助小娜娜采纳,获得10
17秒前
tangxin完成签到,获得积分10
18秒前
miqilin完成签到,获得积分10
20秒前
喜静完成签到 ,获得积分10
22秒前
22秒前
江上游完成签到 ,获得积分10
24秒前
翻翻发布了新的文献求助10
24秒前
24秒前
清秀醉蝶发布了新的文献求助10
24秒前
小李骑士完成签到,获得积分10
25秒前
科研通AI2S应助tangxin采纳,获得10
26秒前
WYJ完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
杳鸢应助科研通管家采纳,获得20
28秒前
华仔应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
29秒前
mmmmm发布了新的文献求助10
29秒前
29秒前
Suchen完成签到 ,获得积分10
30秒前
小情绪完成签到 ,获得积分10
30秒前
31秒前
sikaixue发布了新的文献求助10
31秒前
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268485
求助须知:如何正确求助?哪些是违规求助? 2908048
关于积分的说明 8344158
捐赠科研通 2578313
什么是DOI,文献DOI怎么找? 1401979
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634359