Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering

多目标优化 水准点(测量) 分层 数学优化 进化算法 帕累托原理 计算机科学 渡线 算法 人口 阶段(地层学) 旅游 数学 人工智能 地理 社会学 考古 古生物学 人口学 生物 植物 大地测量学
作者
Xiaoyao Zheng,Baoting Han,Ni Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 486-500 被引量:4
标识
DOI:10.1109/jas.2023.123219
摘要

Tourism route planning is widely applied in the smart tourism field. The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails, sharp peaks and disconnected regions problems, which leads to uneven distribution and weak diversity of optimization solutions of tourism routes. Inspired by these limitations, we propose a multi-objective evolutionary algorithm for tourism route recommendation (MOTRR) with two-stage and Pareto layering based on decomposition. The method decomposes the multi-objective problem into several subproblems, and improves the distribution of solutions through a two-stage method. The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method. The neighborhood is determined according to the weight of the subproblem for crossover mutation. Finally, Pareto layering is used to improve the updating efficiency and population diversity of the solution. The two-stage method is combined with the Pareto layering structure, which not only maintains the distribution and diversity of the algorithm, but also avoids the same solutions. Compared with several classical benchmark algorithms, the experimental results demonstrate competitive advantages on five test functions, hypervolume (HV) and inverted generational distance (IGD) metrics. Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing, our proposed algorithm shows better distribution. It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity, so that the recommended routes can better meet the personalized needs of tourists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jie_e完成签到,获得积分10
刚刚
姗姗发布了新的文献求助10
1秒前
2秒前
酷波er应助duang采纳,获得10
3秒前
鲤鱼平安发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
米奇发布了新的文献求助10
6秒前
9秒前
11秒前
dong完成签到,获得积分10
11秒前
12秒前
翁文倩发布了新的文献求助10
13秒前
13秒前
FashionBoy应助秋鱼采纳,获得10
13秒前
西因发布了新的文献求助10
15秒前
iron发布了新的文献求助20
16秒前
今后应助糖糖糖唐采纳,获得10
17秒前
科研通AI6应助坚定小松鼠采纳,获得10
18秒前
泡泡完成签到,获得积分10
19秒前
愉快彩虹完成签到,获得积分10
21秒前
风语过完成签到,获得积分10
22秒前
从嘉完成签到,获得积分10
22秒前
Tianz完成签到,获得积分10
23秒前
爆米花应助lankeren采纳,获得10
23秒前
23秒前
余小琴完成签到 ,获得积分10
24秒前
24秒前
24秒前
Hello应助米奇采纳,获得10
24秒前
25秒前
25秒前
zhang完成签到,获得积分10
25秒前
27秒前
秋鱼发布了新的文献求助10
29秒前
iorpi完成签到,获得积分10
29秒前
糖糖糖唐发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600851
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843458
捐赠科研通 4678360
什么是DOI,文献DOI怎么找? 2539004
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241