Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering

多目标优化 水准点(测量) 分层 数学优化 进化算法 帕累托原理 计算机科学 渡线 算法 人口 阶段(地层学) 旅游 数学 人工智能 地理 社会学 考古 古生物学 人口学 生物 植物 大地测量学
作者
Xiaoyao Zheng,Baoting Han,Ni Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 486-500 被引量:4
标识
DOI:10.1109/jas.2023.123219
摘要

Tourism route planning is widely applied in the smart tourism field. The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails, sharp peaks and disconnected regions problems, which leads to uneven distribution and weak diversity of optimization solutions of tourism routes. Inspired by these limitations, we propose a multi-objective evolutionary algorithm for tourism route recommendation (MOTRR) with two-stage and Pareto layering based on decomposition. The method decomposes the multi-objective problem into several subproblems, and improves the distribution of solutions through a two-stage method. The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method. The neighborhood is determined according to the weight of the subproblem for crossover mutation. Finally, Pareto layering is used to improve the updating efficiency and population diversity of the solution. The two-stage method is combined with the Pareto layering structure, which not only maintains the distribution and diversity of the algorithm, but also avoids the same solutions. Compared with several classical benchmark algorithms, the experimental results demonstrate competitive advantages on five test functions, hypervolume (HV) and inverted generational distance (IGD) metrics. Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing, our proposed algorithm shows better distribution. It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity, so that the recommended routes can better meet the personalized needs of tourists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的捕发布了新的文献求助10
刚刚
失眠台灯完成签到,获得积分20
1秒前
汉堡包应助欢呼小笼包采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
HEM完成签到,获得积分10
5秒前
小蘑菇应助JYP采纳,获得10
5秒前
可爱的函函应助12采纳,获得10
5秒前
XXXXXX发布了新的文献求助10
6秒前
zwq发布了新的文献求助20
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
阔达雨琴完成签到,获得积分20
7秒前
SciGPT应助忐忑的妙柏采纳,获得30
8秒前
8秒前
wxwxwx77完成签到,获得积分10
9秒前
lyon完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
ZCxiang发布了新的文献求助10
12秒前
田様应助十字采纳,获得10
12秒前
昀离发布了新的文献求助30
13秒前
沉默襄发布了新的文献求助10
13秒前
谷青完成签到,获得积分10
13秒前
毛竹完成签到,获得积分10
14秒前
Jasper应助阔达雨琴采纳,获得10
14秒前
14秒前
15秒前
15秒前
gc发布了新的文献求助10
16秒前
蓝色小萝卜完成签到,获得积分10
17秒前
超帅悟空发布了新的文献求助10
17秒前
18秒前
18秒前
念一发布了新的文献求助10
18秒前
清秀灵薇完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736132
求助须知:如何正确求助?哪些是违规求助? 5364373
关于积分的说明 15332475
捐赠科研通 4880103
什么是DOI,文献DOI怎么找? 2622562
邀请新用户注册赠送积分活动 1571553
关于科研通互助平台的介绍 1528376