亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Parallel Drone Scheduling Traveling Salesman Problem with Collective Drones

无人机 旅行商问题 计算机科学 数学优化 调度(生产过程) 元启发式 作业车间调度 运筹学 分布式计算 布线(电子设计自动化) 数学 人工智能 计算机网络 遗传学 生物
作者
Minh Anh Nguyen,Minh Hoàng Hà
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 866-888 被引量:24
标识
DOI:10.1287/trsc.2022.1192
摘要

In this paper, we study a new variant of the parallel drone scheduling traveling salesman problem that aims to increase the utilization of drones, particularly for heavy item deliveries. The system under consideration adopts a technology that combines multiple drones to form a collective drone (c-drone) capable of transporting heavier items. The innovative concept is expected to add further flexibility in vehicle assignment decisions. An especially difficult challenge to address is the collaboration among drones because it requires temporal synchronization between their delivery tours. To better model the reality, we also consider that drone power consumption is a nonlinear function of both speed and parcel weight. We first develop a two-index mixed integer linear programming (MILP) formulation from which a simple branch and cut is developed to solve small-size instances to optimality. To efficiently handle larger problem instances, we propose a ruin-and-recreate metaheuristic with problem-tailored removal and insertion operators, in which an efficient move evaluation procedure based on the topological sort is designed to deal with the complexity of the synchronization constraints. Computational experiments demonstrate the validity of the developed MILP model and the performance of the proposed metaheuristic. Sensitivity analyses based on the classification and regression tree are performed to investigate the benefits of using c-drones and the important factors affecting the efficiency of the new transportation system. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yongtt发布了新的文献求助10
2秒前
10秒前
洞两发布了新的文献求助10
15秒前
顾矜应助yongtt采纳,获得10
17秒前
CipherSage应助Yuanyuan采纳,获得10
17秒前
17秒前
阿丕啊呸完成签到,获得积分10
20秒前
27秒前
28秒前
Yuanyuan发布了新的文献求助10
31秒前
无情的踏歌应助小智采纳,获得10
33秒前
34秒前
贱小贱完成签到,获得积分10
36秒前
寂寞的尔丝完成签到 ,获得积分10
36秒前
Hioa完成签到,获得积分10
37秒前
Lee完成签到 ,获得积分10
38秒前
38秒前
yongtt发布了新的文献求助10
38秒前
yimax完成签到 ,获得积分10
38秒前
45秒前
白华苍松完成签到,获得积分10
50秒前
50秒前
Wuyt完成签到,获得积分10
52秒前
hx完成签到 ,获得积分10
1分钟前
汉堡包应助心杨采纳,获得10
1分钟前
烟花应助刻苦小鸭子采纳,获得10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
猪仔5号完成签到 ,获得积分0
1分钟前
隐形曼青应助yongtt采纳,获得10
1分钟前
洞两发布了新的文献求助10
1分钟前
好运来完成签到 ,获得积分10
1分钟前
Yuanyuan发布了新的文献求助30
1分钟前
1分钟前
Arabella完成签到,获得积分10
1分钟前
1分钟前
1分钟前
磊少完成签到,获得积分10
1分钟前
轻松雨旋完成签到 ,获得积分10
1分钟前
BowieHuang应助洞两采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561295
求助须知:如何正确求助?哪些是违规求助? 4646384
关于积分的说明 14678498
捐赠科研通 4587703
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490472
关于科研通互助平台的介绍 1461362