A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

列线图 医学 鼻咽癌 肿瘤科 内科学 危险系数 阶段(地层学) 一致性 放射治疗 置信区间 生物 古生物学
作者
Lianzhen Zhong,Di Dong,Xueliang Fang,Fan Zhang,Ning Zhang,Liwen Zhang,Mengjie Fang,Wei Jiang,Shaobo Liang,Cong Li,Yujia Liu,Xun Zhao,Runnan Cao,Hong Shan,Zhenhua Hu,Jun Ma,Ling‐Long Tang,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:70: 103522-103522 被引量:108
标识
DOI:10.1016/j.ebiom.2021.103522
摘要

Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC.A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator.The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters.Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC.National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋黄啵啵发布了新的文献求助10
2秒前
3秒前
zqh完成签到,获得积分20
3秒前
3秒前
6秒前
6秒前
Liu发布了新的文献求助10
8秒前
CT完成签到,获得积分10
8秒前
xiaosu发布了新的文献求助10
9秒前
YY发布了新的文献求助30
10秒前
昏睡的人完成签到 ,获得积分10
11秒前
Komorebi完成签到 ,获得积分10
13秒前
zhaozhao发布了新的文献求助20
15秒前
71完成签到,获得积分10
15秒前
小白完成签到 ,获得积分10
16秒前
17秒前
快乐芷荷完成签到 ,获得积分10
17秒前
chj完成签到,获得积分10
17秒前
qiqiqiqiqi完成签到 ,获得积分10
17秒前
hope完成签到,获得积分10
18秒前
23秒前
saberLee发布了新的文献求助10
23秒前
赵宇鹏完成签到,获得积分10
23秒前
24秒前
爱笑的蛟凤完成签到,获得积分10
26秒前
笨笨千亦完成签到 ,获得积分10
28秒前
左欣岳完成签到 ,获得积分10
29秒前
30秒前
saberLee完成签到,获得积分10
30秒前
31秒前
斯文败类应助樱花打落雨采纳,获得10
32秒前
无私航空发布了新的文献求助10
32秒前
33秒前
Lucas应助gaijiaofanv采纳,获得10
35秒前
开心幻巧完成签到,获得积分10
35秒前
36秒前
汉堡包应助四维穿梭采纳,获得10
36秒前
闲人颦儿完成签到,获得积分10
37秒前
xiaosu发布了新的文献求助10
38秒前
萨尔莫斯发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675671
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460963