已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

列线图 医学 鼻咽癌 肿瘤科 内科学 危险系数 阶段(地层学) 一致性 放射治疗 置信区间 生物 古生物学
作者
Lianzhen Zhong,Di Dong,Xueliang Fang,Fan Zhang,Ning Zhang,Liwen Zhang,Mengjie Fang,Wei Jiang,Shaobo Liang,Cong Li,Yujia Liu,Xun Zhao,Runnan Cao,Hong Shan,Zhenhua Hu,Jun Ma,Ling‐Long Tang,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:70: 103522-103522 被引量:108
标识
DOI:10.1016/j.ebiom.2021.103522
摘要

Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC.A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator.The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters.Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC.National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小马甲应助王一一采纳,获得20
1秒前
1秒前
外向雁梅发布了新的文献求助10
1秒前
自信尔竹完成签到,获得积分10
3秒前
别看了完成签到,获得积分10
3秒前
年年发布了新的文献求助10
5秒前
che发布了新的文献求助10
6秒前
Jessica发布了新的文献求助10
7秒前
Lucas应助啊啊啊采纳,获得10
8秒前
我爱吃糯米团子完成签到,获得积分10
8秒前
充电宝应助ernest采纳,获得30
9秒前
rex完成签到,获得积分10
9秒前
10秒前
keep完成签到 ,获得积分10
10秒前
11秒前
左贵辉完成签到,获得积分20
12秒前
大个应助年年采纳,获得10
13秒前
harry完成签到,获得积分10
13秒前
heal发布了新的文献求助10
14秒前
14秒前
15秒前
ernest发布了新的文献求助30
15秒前
16秒前
harry发布了新的文献求助10
16秒前
领导范儿应助lee采纳,获得10
16秒前
16秒前
细腻的谷丝完成签到 ,获得积分20
16秒前
19秒前
20秒前
啊啊啊发布了新的文献求助10
20秒前
极速小鱼发布了新的文献求助10
20秒前
啦啦啦啦发布了新的文献求助10
20秒前
Orange应助灵巧电灯胆采纳,获得10
21秒前
田様应助悲凉的菠萝采纳,获得10
22秒前
zrn完成签到 ,获得积分10
22秒前
123发布了新的文献求助10
22秒前
淡淡尔烟发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722