A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

列线图 医学 鼻咽癌 肿瘤科 内科学 危险系数 阶段(地层学) 一致性 放射治疗 置信区间 生物 古生物学
作者
Lianzhen Zhong,Di Dong,Xianfeng Fang,Fan Zhang,Ning Zhang,Liwen Zhang,Mengjie Fang,Wei Jiang,Shuli Liang,Cong Liu,Yujia Liu,Xun Zhao,Runnan Cao,Hong Shan,Zhenhua Hu,Jingfei Ma,Ling‐Long Tang,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:70: 103522-103522 被引量:38
标识
DOI:10.1016/j.ebiom.2021.103522
摘要

Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC.A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator.The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters.Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC.National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随机子发布了新的文献求助10
1秒前
科研小道完成签到,获得积分20
1秒前
1秒前
2秒前
在水一方应助Marin_采纳,获得10
2秒前
3秒前
3秒前
高山流水给高山流水的求助进行了留言
4秒前
Jasper应助xz采纳,获得10
5秒前
6秒前
7秒前
7秒前
啦啦啦完成签到,获得积分10
8秒前
章鱼发布了新的文献求助10
8秒前
Caliho完成签到,获得积分10
8秒前
爱听歌的老九完成签到,获得积分10
9秒前
锂享生活发布了新的文献求助10
9秒前
9秒前
刘玲玲完成签到 ,获得积分10
10秒前
小爽完成签到,获得积分10
10秒前
10秒前
杨丽佳完成签到 ,获得积分20
11秒前
123发布了新的文献求助10
11秒前
JamesPei应助尊敬冬萱采纳,获得10
12秒前
思源应助蓝桉采纳,获得30
12秒前
三伏天发布了新的文献求助20
13秒前
14秒前
安详小小完成签到,获得积分20
14秒前
科研通AI2S应助汤汤采纳,获得10
15秒前
QY11完成签到 ,获得积分10
16秒前
徐峰完成签到 ,获得积分10
16秒前
wanci应助xin采纳,获得10
16秒前
17秒前
共享精神应助章鱼采纳,获得10
17秒前
17秒前
angew2000发布了新的文献求助10
18秒前
20秒前
一叶知秋完成签到,获得积分10
20秒前
yue发布了新的文献求助30
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234