A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

列线图 医学 鼻咽癌 肿瘤科 内科学 危险系数 阶段(地层学) 一致性 放射治疗 置信区间 生物 古生物学
作者
Lianzhen Zhong,Di Dong,Xueliang Fang,Fan Zhang,Ning Zhang,Liwen Zhang,Mengjie Fang,Wei Jiang,Shaobo Liang,Cong Li,Yujia Liu,Xun Zhao,Runnan Cao,Hong Shan,Zhenhua Hu,Jun Ma,Ling‐Long Tang,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:70: 103522-103522 被引量:108
标识
DOI:10.1016/j.ebiom.2021.103522
摘要

Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC.A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator.The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters.Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC.National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木木三完成签到,获得积分10
刚刚
Jessie完成签到,获得积分10
刚刚
慕青应助冷风寒清采纳,获得20
刚刚
qqq发布了新的文献求助20
刚刚
一只渣狗发布了新的文献求助10
1秒前
思源应助诚c采纳,获得10
1秒前
dddsssaaa发布了新的文献求助10
1秒前
陈杰驳回了Akim应助
1秒前
1秒前
ceeray23应助李d1_采纳,获得10
2秒前
结实初夏发布了新的文献求助10
2秒前
luk发布了新的文献求助10
3秒前
麻辣香锅发布了新的文献求助10
3秒前
3秒前
4秒前
SciGPT应助教授采纳,获得10
5秒前
科研通AI2S应助hhh采纳,获得10
5秒前
6秒前
6秒前
好运来完成签到 ,获得积分10
6秒前
耍酷傲菡完成签到 ,获得积分10
6秒前
7秒前
清脆的水蜜桃完成签到,获得积分10
7秒前
桐桐应助cheesy采纳,获得10
8秒前
8秒前
qitaas发布了新的文献求助10
9秒前
9秒前
XINWU发布了新的文献求助10
10秒前
10秒前
勇闯SCI一区完成签到,获得积分10
10秒前
霍师傅发布了新的文献求助10
10秒前
瘦瘦荟完成签到,获得积分10
10秒前
11秒前
探寻完成签到,获得积分10
11秒前
13秒前
Mine_cherry应助奋斗采纳,获得10
13秒前
13秒前
14秒前
探寻发布了新的文献求助10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610879
求助须知:如何正确求助?哪些是违规求助? 4695307
关于积分的说明 14886374
捐赠科研通 4723535
什么是DOI,文献DOI怎么找? 2545288
邀请新用户注册赠送积分活动 1510046
关于科研通互助平台的介绍 1473121