A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study

列线图 医学 鼻咽癌 肿瘤科 内科学 危险系数 阶段(地层学) 一致性 放射治疗 置信区间 生物 古生物学
作者
Lianzhen Zhong,Di Dong,Xueliang Fang,Fan Zhang,Ning Zhang,Liwen Zhang,Mengjie Fang,Wei Jiang,Shaobo Liang,Cong Li,Yujia Liu,Xun Zhao,Runnan Cao,Hong Shan,Zhenhua Hu,Jun Ma,Ling‐Long Tang,Jie Tian
出处
期刊:EBioMedicine [Elsevier]
卷期号:70: 103522-103522 被引量:108
标识
DOI:10.1016/j.ebiom.2021.103522
摘要

Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC.A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator.The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters.Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC.National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困困鱼发布了新的文献求助10
刚刚
刚刚
Kycg完成签到,获得积分10
刚刚
刚刚
机灵书易发布了新的文献求助10
刚刚
伶俐的老四完成签到 ,获得积分10
1秒前
HOME完成签到,获得积分10
1秒前
菜虫虫发布了新的文献求助10
1秒前
虚拟的柜子完成签到,获得积分10
1秒前
1秒前
FashionBoy应助dagongren采纳,获得10
1秒前
赵辉完成签到,获得积分10
1秒前
1秒前
jy关注了科研通微信公众号
2秒前
999999发布了新的文献求助10
2秒前
Reachu.Chan完成签到,获得积分10
2秒前
Jasper应助灿灿采纳,获得10
2秒前
2秒前
2秒前
在水一方应助jfz采纳,获得10
2秒前
3秒前
3秒前
fanfanfan发布了新的文献求助10
3秒前
汉堡包应助Liangyu采纳,获得10
3秒前
3秒前
包容初丹发布了新的文献求助10
4秒前
天空之云发布了新的文献求助10
4秒前
桐桐应助吴泰霞采纳,获得10
4秒前
YUYUYU完成签到,获得积分10
4秒前
yy发布了新的文献求助50
4秒前
5秒前
5秒前
Sw1ft发布了新的文献求助10
6秒前
漂泊2025完成签到,获得积分10
6秒前
6秒前
李健应助huoguoyv采纳,获得10
6秒前
6秒前
赘婿应助axiba采纳,获得10
7秒前
DEK发布了新的文献求助30
7秒前
张欣宇发布了新的文献求助10
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620188
求助须知:如何正确求助?哪些是违规求助? 4704708
关于积分的说明 14929099
捐赠科研通 4761278
什么是DOI,文献DOI怎么找? 2550838
邀请新用户注册赠送积分活动 1513615
关于科研通互助平台的介绍 1474523