Identification and prediction of urban airspace availability for emerging air mobility operations

空中交通管制 大都市区 国家空域系统 分离(统计) 运输工程 计算机科学 概率逻辑 交通拥挤 流量(计算机网络) 地理 计算机网络 工程类 航空航天工程 机器学习 人工智能 考古
作者
Mayara Condé Rocha Murça
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:131: 103274-103274 被引量:17
标识
DOI:10.1016/j.trc.2021.103274
摘要

Emerging Urban Air Mobility (UAM) operations are expected to introduce novel air traffic networks in metropolitan areas in order to provide on-demand air transportation services and alleviate ground congestion. Yet, metropolitan regions are typically characterized by complex and dense terminal airspace structure that accommodates arrival and departure traffic from large metroplex airports. Therefore, UAM operations are expected to be initially integrated into urban airspace without interfering with conventional operations and compromising current safety and efficiency levels. This paper presents a data-driven approach to identify and predict available urban airspace that is procedurally separated from conventional air traffic towards supporting UAM integration. We use historical aircraft tracking and meteorological data to learn the spatial distribution of air traffic in the terminal airspace and create a probabilistic traffic model to predict active traffic patterns and their spatial confidence regions given current operational conditions. We demonstrate the approach for the city of Sao Paulo and its closest commercial airport, Congonhas (CGH), in Brazil. The results show that leveraging the traffic flow dynamics to allocate the urban airspace dynamically is beneficial to increase UAM accessibility by more than 5% from 3000 ft. Moreover, airspace availability is found to be highly sensitive to the applied separation requirements, emphasizing the importance of leveraging advanced technologies to progressively make such requirements less stringent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼鸽子应助科研通管家采纳,获得10
刚刚
YSJ应助科研通管家采纳,获得50
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
lilivite应助科研通管家采纳,获得20
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
wu8577应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
ATOM发布了新的文献求助10
2秒前
2秒前
2秒前
花花完成签到,获得积分10
3秒前
5秒前
rainbow完成签到,获得积分10
5秒前
池不胖发布了新的文献求助10
6秒前
脑洞疼应助杨沛儒采纳,获得10
7秒前
YingLi发布了新的文献求助10
7秒前
7秒前
clcl发布了新的文献求助20
7秒前
Lea_at_完成签到 ,获得积分20
8秒前
突突leolo发布了新的文献求助20
8秒前
没风的季节完成签到,获得积分10
8秒前
CipherSage应助电闪采纳,获得10
8秒前
orixero应助哈哈哈采纳,获得10
9秒前
hhh完成签到,获得积分10
9秒前
潘多拉发布了新的文献求助20
10秒前
小蘑菇应助糕米采纳,获得10
10秒前
陶醉世德完成签到,获得积分10
11秒前
12秒前
MeOH拿桶接完成签到,获得积分10
12秒前
ZMY完成签到,获得积分10
12秒前
13秒前
saisai完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344