Prediction of the progression from mild cognitive impairment to Alzheimer’s disease using a radiomics-integrated model

逻辑回归 医学 接收机工作特性 磁共振成像 无线电技术 痴呆 神经影像学 人工智能 机器学习 内科学 肿瘤科 疾病 放射科 计算机科学 精神科
作者
Zhenyu Shu,Dewang Mao,Yuqian Xu,Shengli Yuan,Peipei Pang,Xiangyang Gong
出处
期刊:Therapeutic Advances in Neurological Disorders [SAGE]
卷期号:14: 175628642110295-175628642110295 被引量:14
标识
DOI:10.1177/17562864211029551
摘要

This study aimed to build and validate a radiomics-integrated model with whole-brain magnetic resonance imaging (MRI) to predict the progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD).357 patients with MCI were selected from the ADNI database, which is an open-source database for AD with multicentre cooperation, of which 154 progressed to AD during the 48-month follow-up period. Subjects were divided into a training and test group. For each patient, the baseline T1WI MR images were automatically segmented into white matter, gray matter and cerebrospinal fluid (CSF), and radiomics features were extracted from each tissue. Based on the data from the training group, a radiomics signature was built using logistic regression after dimensionality reduction. The radiomics signatures, in combination with the apolipoprotein E4 (APOE4) and baseline neuropsychological scales, were used to build an integrated model using machine learning. The receiver operating characteristics (ROC) curve and data of the test group were used to evaluate the diagnostic accuracy and reliability of the model, respectively. In addition, the clinical prognostic efficacy of the model was evaluated based on the time of progression from MCI to AD.Stepwise logistic regression analysis showed that the APOE4, clinical dementia rating, AD assessment scale, and radiomics signature were independent predictors of MCI progression to AD. The integrated model was constructed based on independent predictors using machine learning. The ROC curve showed that the accuracy of the model in the training and the test sets was 0.814 and 0.807, with a specificity of 0.671 and 0.738, and a sensitivity of 0.822 and 0.745, respectively. In addition, the model had the most significant diagnostic efficacy in predicting MCI progression to AD within 12 months, with an AUC of 0.814, sensitivity of 0.726, and specificity of 0.798.The integrated model based on whole-brain radiomics can accurately identify and predict the high-risk population of MCI patients who may progress to AD. Radiomics biomarkers are practical in the precursory stage of such disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SYLH应助镜小小静采纳,获得10
2秒前
欧巴拉吧发布了新的文献求助10
2秒前
所所应助流光广陵采纳,获得30
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
lg完成签到,获得积分10
6秒前
Starry完成签到,获得积分10
6秒前
6秒前
Cecilia发布了新的文献求助10
7秒前
野山完成签到,获得积分10
7秒前
感谢大佬发布了新的文献求助10
7秒前
白杨发布了新的文献求助20
8秒前
张琼敏发布了新的文献求助10
8秒前
Keven发布了新的文献求助10
9秒前
9秒前
9秒前
Qqq发布了新的文献求助10
10秒前
今后应助无不破哉采纳,获得10
10秒前
科研通AI2S应助玄妙采纳,获得10
10秒前
初心发布了新的文献求助10
11秒前
桐桐应助李佰丹采纳,获得10
11秒前
拉萨小医生完成签到,获得积分10
12秒前
简单的期待应助沉辰采纳,获得10
12秒前
12秒前
dujiajiyi完成签到 ,获得积分10
12秒前
阿柴_Htao完成签到,获得积分10
14秒前
wanci应助糖葫芦采纳,获得10
14秒前
傻呼呼完成签到,获得积分10
14秒前
yyf发布了新的文献求助10
15秒前
Keven完成签到,获得积分10
15秒前
lalala应助JJ采纳,获得20
15秒前
迟大猫应助任性的思枫采纳,获得10
15秒前
15秒前
好好学习发布了新的文献求助10
15秒前
情怀应助卓头OvQ采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797