亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel grey prediction model for seasonal time series

时间序列 计量经济模型 系列(地层学) 计算机科学 计量经济学 航程(航空) 概括性 样品(材料) 统计 序列(生物学) 人工智能 机器学习 数学 经济 工程类 地质学 遗传学 古生物学 航空航天工程 色谱法 化学 管理 生物
作者
Weijie Zhou,Rongrong Jiang,Song Ding,Yuke Cheng,Yao Li,Huihui Tao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:229: 107363-107363 被引量:41
标识
DOI:10.1016/j.knosys.2021.107363
摘要

Abstract Considering the weakness in the discrete grey seasonal model, a new grey seasonal model is put forward by introducing a time trends item. Moreover, some properties of this proposed model are deduced, such as the unbiased feature, to provide more information to perceive this model. Subsequently, four time series concerning the quarterly and monthly electricity and petroleum consumptions that have various features of the upward, downward, and wave tendencies from China, America, Japan, and Germany, are adopted to verify the availability and generality of this new model. Experimental results from these four case studies demonstrate that, on the one hand, the proposed method can strikingly improve the simulating and forecasting performance compared with the conventional discrete grey seasonal model, indicating this new model is capable of describing seasonal time series with different tendencies. On the other hand, this new technology is validated to have superior forecasting ability over a range of grey models, econometric models, and machine learning methods. Finally, the impact of sample size on the precision for the new model is further discussed, and results suggest that the modeling sample length should be at least four times the number of cycles in a seasonal sequence in order to ensure the satisfied and stable forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
29秒前
大模型应助畅快的涵蕾采纳,获得10
57秒前
MchemG举报王兴龙求助涉嫌违规
1分钟前
1分钟前
观众完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
nickel完成签到,获得积分10
2分钟前
2分钟前
jokerhoney完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
tingalan完成签到,获得积分0
2分钟前
xlacy完成签到,获得积分10
3分钟前
3分钟前
小马甲应助xlacy采纳,获得10
3分钟前
Akashi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
木可发布了新的文献求助10
4分钟前
李健的小迷弟应助木可采纳,获得10
5分钟前
木耳完成签到,获得积分10
8分钟前
8分钟前
桐桐应助鹏笑采纳,获得10
8分钟前
8分钟前
Jay发布了新的文献求助10
8分钟前
Criminology34应助科研通管家采纳,获得30
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
Jay完成签到,获得积分10
8分钟前
8分钟前
ding应助感性的靖仇采纳,获得10
10分钟前
善学以致用应助Nikki采纳,获得10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357215
求助须知:如何正确求助?哪些是违规求助? 4488685
关于积分的说明 13972467
捐赠科研通 4389901
什么是DOI,文献DOI怎么找? 2411745
邀请新用户注册赠送积分活动 1404334
关于科研通互助平台的介绍 1378501