Single-pixel imaging using physics enhanced deep learning

计算机科学 人工智能 迭代重建 像素 稳健性(进化) 深度学习 测距 计算机视觉 高光谱成像 反问题 算法 数学 基因 电信 数学分析 生物化学 化学
作者
Fei Wang,C. H. Wang,Chenjin Deng,Shensheng Han,Guohai Situ
出处
期刊:Photonics Research [The Optical Society]
卷期号:10 (1): 104-104 被引量:72
标识
DOI:10.1364/prj.440123
摘要

Single-pixel imaging (SPI) is a typical computational imaging modality that allows two- and three-dimensional image reconstruction from a one-dimensional bucket signal acquired under structured illumination. It is in particular of interest for imaging under low light conditions and in spectral regions where good cameras are unavailable. However, the resolution of the reconstructed image in SPI is strongly dependent on the number of measurements in the temporal domain. Data-driven deep learning has been proposed for high-quality image reconstruction from a undersampled bucket signal. But the generalization issue prohibits its practical application. Here we propose a physics-enhanced deep learning approach for SPI. By blending a physics-informed layer and a model-driven fine-tuning process, we show that the proposed approach is generalizable for image reconstruction. We implement the proposed method in an in-house SPI system and an outdoor single-pixel LiDAR system, and demonstrate that it outperforms some other widespread SPI algorithms in terms of both robustness and fidelity. The proposed method establishes a bridge between data-driven and model-driven algorithms, allowing one to impose both data and physics priors for inverse problem solvers in computational imaging, ranging from remote sensing to microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siqi发布了新的文献求助10
1秒前
赘婿应助curtain采纳,获得10
2秒前
咚咚完成签到,获得积分10
2秒前
Selenge完成签到,获得积分10
5秒前
英俊的铭应助林小鱼采纳,获得10
5秒前
康小姐应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
烟花应助柿子吖采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
今后应助今羽采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
礞石应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
yangmingyu发布了新的文献求助10
8秒前
11秒前
古夕完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
温乘云完成签到,获得积分10
15秒前
Teddyboy完成签到 ,获得积分10
17秒前
David发布了新的文献求助10
17秒前
孤独的惜梦完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
李大眼完成签到 ,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488940
求助须知:如何正确求助?哪些是违规求助? 3076437
关于积分的说明 9145315
捐赠科研通 2768689
什么是DOI,文献DOI怎么找? 1519340
邀请新用户注册赠送积分活动 703765
科研通“疑难数据库(出版商)”最低求助积分说明 702009