坑洞(地质)
计算机科学
人工智能
卷积神经网络
目标检测
交叉口(航空)
计算机视觉
集合(抽象数据类型)
深度学习
度量(数据仓库)
模式识别(心理学)
数据挖掘
地图学
地理
地质学
程序设计语言
岩石学
作者
Sung-Sik Park,Van-Than Tran,Dong‐Eun Lee
出处
期刊:Applied sciences
[Multidisciplinary Digital Publishing Institute]
日期:2021-11-26
卷期号:11 (23): 11229-11229
被引量:24
摘要
Pothole repair is one of the paramount tasks in road maintenance. Effective road surface monitoring is an ongoing challenge to the management agency. The current pothole detection, which is conducted image processing with a manual operation, is labour-intensive and time-consuming. Computer vision offers a mean to automate its visual inspection process using digital imaging, hence, identifying potholes from a series of images. The goal of this study is to apply different YOLO models for pothole detection. Three state-of-the-art object detection frameworks (i.e., YOLOv4, YOLOv4-tiny, and YOLOv5s) are experimented to measure their performance involved in real-time responsiveness and detection accuracy using the image set. The image set is identified by running the deep convolutional neural network (CNN) on several deep learning pothole detectors. After collecting a set of 665 images in 720 × 720 pixels resolution that captures various types of potholes on different road surface conditions, the set is divided into training, testing, and validation subsets. A mean average precision at 50% Intersection-over-Union threshold (mAP_0.5) is used to measure the performance of models. The study result shows that the mAP_0.5 of YOLOv4, YOLOv4-tiny, and YOLOv5s are 77.7%, 78.7%, and 74.8%, respectively. It confirms that the YOLOv4-tiny is the best fit model for pothole detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI