亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrewyu完成签到,获得积分10
10秒前
唐禹嘉完成签到 ,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Kevin发布了新的文献求助10
1分钟前
lessismore发布了新的文献求助10
2分钟前
HYQ关闭了HYQ文献求助
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
Kevin完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
漂亮的秋天完成签到 ,获得积分10
4分钟前
yummm完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
核桃应助不安的靖柔采纳,获得10
4分钟前
核桃应助不安的靖柔采纳,获得10
4分钟前
不安的靖柔完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
whj完成签到 ,获得积分10
8分钟前
8分钟前
迟梦琪发布了新的文献求助10
8分钟前
HYQ发布了新的文献求助10
8分钟前
迟梦琪完成签到,获得积分20
9分钟前
三世完成签到 ,获得积分10
9分钟前
gszy1975完成签到,获得积分10
9分钟前
9分钟前
红影完成签到,获得积分10
9分钟前
细腻笑卉发布了新的文献求助20
10分钟前
细腻笑卉完成签到 ,获得积分10
10分钟前
量子星尘发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
feihua1完成签到 ,获得积分10
12分钟前
13分钟前
tranphucthinh发布了新的文献求助10
13分钟前
tranphucthinh完成签到,获得积分10
13分钟前
CodeCraft应助章赛采纳,获得10
14分钟前
15分钟前
SciGPT应助小冯看不懂采纳,获得10
15分钟前
科研通AI5应助羞涩的寒松采纳,获得10
15分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683