REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjz240221完成签到 ,获得积分10
刚刚
科研通AI6应助AndyDong采纳,获得10
刚刚
yang完成签到 ,获得积分10
1秒前
星辰大海应助我行我素采纳,获得10
1秒前
大个应助sunyanghu369采纳,获得10
1秒前
copper发布了新的文献求助10
1秒前
可乐龙猫发布了新的文献求助10
1秒前
1秒前
墓轩发布了新的文献求助10
2秒前
ZhaoJiaheng完成签到,获得积分20
2秒前
韩梅完成签到,获得积分20
2秒前
2秒前
2秒前
临风完成签到,获得积分10
3秒前
houruibut发布了新的文献求助10
3秒前
3秒前
3秒前
友好汪完成签到,获得积分10
3秒前
llll发布了新的文献求助10
3秒前
outlaw_chen完成签到,获得积分10
3秒前
冰选若南完成签到,获得积分20
3秒前
qiqi完成签到 ,获得积分10
4秒前
4秒前
珞咔完成签到,获得积分20
4秒前
4秒前
Jasper应助Aurora采纳,获得10
4秒前
星辰大海应助逆风起笔采纳,获得10
4秒前
yulong发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
丘比特应助syy080837采纳,获得30
5秒前
5秒前
传奇3应助Wqhao采纳,获得10
6秒前
7秒前
7秒前
zhihaiyu发布了新的文献求助10
7秒前
学习完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238