REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
织诗成锦完成签到,获得积分10
1秒前
科研通AI5应助文艺水蜜桃采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助BILNQPL采纳,获得10
2秒前
流白完成签到,获得积分10
2秒前
2秒前
Yolo完成签到,获得积分20
2秒前
YY应助胖豆采纳,获得10
3秒前
3秒前
jagger发布了新的文献求助10
3秒前
3秒前
4秒前
ChemistryZyh完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
充电宝应助朴素的士晋采纳,获得10
5秒前
5秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
7秒前
7秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
7秒前
7秒前
CodeCraft应助Mumu采纳,获得10
8秒前
飘逸数据线完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
Gauss完成签到,获得积分0
8秒前
丘奇完成签到,获得积分10
8秒前
木子发布了新的文献求助10
8秒前
标致的方盒完成签到,获得积分10
8秒前
9秒前
致橡树完成签到,获得积分20
9秒前
Yolo发布了新的文献求助10
9秒前
yyy完成签到,获得积分20
10秒前
10秒前
10秒前
yoon发布了新的文献求助10
10秒前
脑洞疼应助香蕉静芙采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762