REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄一发布了新的文献求助10
1秒前
1秒前
领导范儿应助One采纳,获得10
3秒前
雪白小蜜蜂完成签到,获得积分10
4秒前
4秒前
4秒前
天天快乐应助玄一采纳,获得10
4秒前
6秒前
舒一一发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
bai完成签到 ,获得积分10
6秒前
等待凡英完成签到,获得积分10
7秒前
安静的荧完成签到,获得积分10
8秒前
doudou发布了新的文献求助10
8秒前
9秒前
魔幻的宫苴完成签到,获得积分20
9秒前
爆米花应助Hibiscus95采纳,获得10
9秒前
xclpp发布了新的文献求助10
11秒前
12秒前
等待凡英发布了新的文献求助10
12秒前
蓝桉完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
茶荼完成签到,获得积分10
15秒前
Uranus完成签到,获得积分10
16秒前
16秒前
研友_VZG7GZ应助One采纳,获得10
16秒前
丰富靖琪完成签到 ,获得积分10
17秒前
wanci应助lixi采纳,获得10
18秒前
汤圆发布了新的文献求助10
18秒前
18秒前
Uranus发布了新的文献求助10
19秒前
所所应助Youlu采纳,获得10
19秒前
靓丽三德应助读书的时候采纳,获得10
19秒前
20秒前
王小雨发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160