亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝塔完成签到 ,获得积分10
刚刚
3秒前
传奇3应助hhh采纳,获得10
5秒前
天天快乐应助hhh采纳,获得10
6秒前
英俊的铭应助hhh采纳,获得10
6秒前
Akim应助hhh采纳,获得10
6秒前
酷波er应助hhh采纳,获得10
6秒前
852应助hhh采纳,获得10
6秒前
思源应助hhh采纳,获得10
6秒前
搜集达人应助hhh采纳,获得10
6秒前
白三发布了新的文献求助20
8秒前
英勇的梨愁完成签到 ,获得积分10
11秒前
Alberta完成签到,获得积分10
12秒前
白三完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
18秒前
HTniconico完成签到 ,获得积分10
26秒前
开朗白山完成签到,获得积分10
29秒前
33秒前
jingluo发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
40秒前
彭于晏应助hhh采纳,获得10
44秒前
我主沉浮完成签到,获得积分10
44秒前
45秒前
嘻嘻哈哈应助abc采纳,获得10
46秒前
48秒前
八两发布了新的文献求助10
52秒前
52秒前
52秒前
53秒前
53秒前
54秒前
54秒前
55秒前
55秒前
55秒前
117完成签到,获得积分10
57秒前
hhh发布了新的文献求助10
57秒前
hhh发布了新的文献求助10
58秒前
hhh发布了新的文献求助10
58秒前
hhh发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164