亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

REBET: a method to determine the number of cell clusters based on batch effect removal

航程(航空) 计算机科学 星团(航天器) 批处理 生物系统 数据挖掘 生物 材料科学 复合材料 程序设计语言
作者
Zhao-Yu Fang,Cui-Xiang Lin,Yunpei Xu,Hongdong Li,Qingsong Xu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab204
摘要

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助rita4616采纳,获得10
2秒前
成就的笑南完成签到 ,获得积分10
15秒前
zlx完成签到,获得积分10
16秒前
火鸡味锅巴完成签到 ,获得积分10
18秒前
18秒前
zlx发布了新的文献求助10
24秒前
烟花应助fifi采纳,获得10
33秒前
徐笑松完成签到 ,获得积分10
35秒前
彼得应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
38秒前
shhoing应助科研通管家采纳,获得10
38秒前
英姑应助yang采纳,获得30
38秒前
科研通AI6应助rita4616采纳,获得10
39秒前
长生完成签到 ,获得积分10
41秒前
51秒前
满意的颦发布了新的文献求助10
54秒前
吾系渣渣辉完成签到 ,获得积分10
56秒前
TonyLee完成签到,获得积分10
58秒前
27完成签到 ,获得积分10
59秒前
1分钟前
xzy998应助满意的颦采纳,获得10
1分钟前
jhgg8009完成签到,获得积分10
1分钟前
1分钟前
1分钟前
fifi发布了新的文献求助10
1分钟前
斯文败类应助ceeray23采纳,获得20
1分钟前
1分钟前
领导范儿应助xiaom采纳,获得10
1分钟前
dyw关闭了dyw文献求助
1分钟前
卡卡东完成签到 ,获得积分10
1分钟前
lll完成签到 ,获得积分10
1分钟前
温暖的芷烟完成签到,获得积分10
1分钟前
1分钟前
xiaom完成签到,获得积分10
1分钟前
RCheng完成签到,获得积分10
1分钟前
仰勒完成签到 ,获得积分10
2分钟前
李健的粉丝团团长应助momo采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634601
捐赠科研通 4575807
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485270
关于科研通互助平台的介绍 1456366