析氧
过电位
分解水
电催化剂
塔菲尔方程
单斜晶系
氧化物
催化作用
化学
材料科学
化学工程
无机化学
物理化学
晶体结构
结晶学
电极
电化学
冶金
工程类
光催化
生物化学
作者
Jianlin Zhang,Shipeng Geng,Ruchun Li,Qian Zhang,Yecheng Zhou,Tongwen Yu,Yi Wang,Shuqin Song,Zongping Shao
标识
DOI:10.1016/j.cej.2021.130492
摘要
Designing highly active and stable electrocatalysts to efficiently catalyze oxygen evolution reaction (OER) plays a crucial role in hydrogen production from water splitting. Here, we develop a novel monoclinic ABO4-type metal oxide as versatile candidate for high performance OER catalysis. It has a flexible multi-metal composition and tunable structure which can rationally optimize the OER catalytic activities of ABO4-type oxide. Remarkably, the obtained single-crystal Fe0.4Co0.6W0.4Mo0.6O4 shows an excellent OER catalytic activity with an overpotential of 276.4 mV at 10 mA cm−2, as well as an ultra-low Tafel slope of 30.9 mV decade−1, which outperforms that of the state-of-the-art RuO2 electrocatalyst. Mechanism analysis by density functional theory calculations confirms that the octahedral A sites with low valence state can serve as the active sites in ABO4-type oxide for OER. In addition, faster charge transfer occurs in the low spin state of Co2+ sites (LS: t2g6eg1), in which the formation of O* from OH* as the rate-determining step in OER can be accelerated for favorable OER. More importantly, the new monoclinic ABO4-type material presented in this work is significantly different from the known spinel and perovskite oxides and may pioneer a new wave of research as efficient electrocatalysts and energy materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI