Movie Score Predication Model Based on Multiple Nonlinear Regression

非线性回归 回归 计算机科学 统计 非线性系统 人工智能 回归分析 数学 物理 量子力学
作者
Xuemei You,Yongdong Liu,Mingming Zhang,Man Zhang
出处
期刊:Tehnicki Vjesnik-technical Gazette [Mechanical Engineering Faculty in Slavonski Brod]
卷期号:28 (3)
标识
DOI:10.17559/tv-20210109021712
摘要

In the movie industry, the ability to predict a movieꞌs score before its theatrical release can decrease its financial risk.However, accurate predicctions are not easily obtained.To improve the accuracy and scientificity of movie score prediction, this paper proposes a multiple nonlinear regression movie score prediction model (MSPM) in exponential form.Firstly, the influencing factors of film scoring are analyzed.A single problem is selected for the variables of the existing prediction model.This model combines the metadata variables of the film itself and the characteristic variables of film members to conduct quantitative and qualitative analysis on the factors affecting film scoring.Secondly, MSPM is established and the concept of index is introduced.In order to avoid the redundancy of explanatory variables in the MSPM model, the AIC values of the MSPM model and its five sub-models are also calculated to ensure the necessity of selecting explanatory variables.Douban data set is selected to predict movie scores.Finally, compared with linear regression model (Ys) and equal scale model (YM), the actual movie score and predicted value were compared.The results showed that MSPM had the highest prediction effect.Experiments show that the model is effective and robust, and reveals the relationship between film scores and related variables.Real-world data confirms that the MSPM model is a timely and appropriate framework for measuring movie scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助友好代亦采纳,获得10
刚刚
刚刚
李健的小迷弟应助Zzziihao采纳,获得10
刚刚
刚刚
深情安青应助Alex采纳,获得10
1秒前
1秒前
1秒前
大胆以蕊完成签到,获得积分10
1秒前
田様应助young406采纳,获得10
2秒前
2秒前
Kkkkkk完成签到,获得积分10
2秒前
3秒前
absorb发布了新的文献求助10
3秒前
lingling发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
湛湛发布了新的文献求助10
4秒前
lll完成签到,获得积分10
5秒前
星星人完成签到,获得积分10
5秒前
领导范儿应助Bailey采纳,获得30
6秒前
6秒前
ZZH发布了新的文献求助10
6秒前
尚欣雨完成签到,获得积分10
6秒前
CodeCraft应助杨德帅采纳,获得10
6秒前
帅哥发布了新的文献求助10
6秒前
6秒前
可乐完成签到,获得积分10
7秒前
顺心凡梦发布了新的文献求助10
7秒前
a379896033完成签到 ,获得积分10
7秒前
7秒前
林夏应助伯赏盼晴采纳,获得10
8秒前
zzz发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
李明发布了新的文献求助10
8秒前
8秒前
nnnn发布了新的文献求助30
8秒前
我是老大应助Bovr采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791