计算机科学
频道(广播)
人工智能
遥感
召回
精确性和召回率
放射性检测
变更检测
模式识别(心理学)
任务(项目管理)
计算机视觉
图像分辨率
电信
地理
哲学
语言学
经济
管理
作者
Mingliang Liu,Jinjie Huang,Lei Ma,Ling Wan,Jialong Guo,Dongpan Yao
出处
期刊:International Geoscience and Remote Sensing Symposium
日期:2021-07-11
卷期号:: 4344-4347
被引量:3
标识
DOI:10.1109/igarss47720.2021.9554590
摘要
Change detection for high resolution remote sensing images is an important but challenging task. In this article, we propose a spatial-temporal-channel attention Unet++ (STC-Unet++) for remote sensing image change detection. The STC-Unet++ takes advantage of the Unet++ structure, combining semantic information to change detection. In addition, it employs a spatial-temporal-channel attention mechanism, extracting features more discriminatively and improving the change detection accuracy without increasing training time. Finally, experiments are carried out on the LEVIR-CD dataset, and the results show that the STC-Unet++ can effectively detect the changes, achieving 89.0% recall, 88.3% accuracy, 88.4% F1-score, 79.49% IoU and 94.1% AUC.
科研通智能强力驱动
Strongly Powered by AbleSci AI