Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm

运动表象 计算机科学 模式识别(心理学) 滑动窗口协议 脑电图 人工智能 脑-机接口 支持向量机 语音识别 频带 特征提取 时频分析 特征向量 解码方法 节奏 窗口(计算) 计算机视觉 算法 心理学 精神科 哲学 操作系统 美学 滤波器(信号处理) 计算机网络 带宽(计算)
作者
Jun Yang,Zhengmin Ma,Tao Shen
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (21): 10294-10294 被引量:10
标识
DOI:10.3390/app112110294
摘要

The effective decoding of motor imagination EEG signals depends on significant temporal, spatial, and frequency features. For example, the motor imagination of the single limbs is embodied in the μ (8–13 Hz) rhythm and β (13–30 Hz) rhythm in frequency features. However, the significant temporal features are not necessarily manifested in the whole motor imagination process. This paper proposes a Multi-Time and Frequency band Common Space Pattern (MTF-CSP)-based feature extraction and EEG decoding method. The MTF-CSP learns effective motor imagination features from a weak Electroencephalogram (EEG), extracts the most effective time and frequency features, and identifies the motor imagination patterns. Specifically, multiple sliding window signals are cropped from the original signals. The multi-frequency band Common Space Pattern (CSP) features extracted from each sliding window signal are fed into multiple Support Vector Machine (SVM) classifiers with the same parameters. The Effective Duration (ED) algorithm and the Average Score (AS) algorithm are proposed to identify the recognition results of multiple time windows. The proposed method is trained and evaluated on the EEG data of nine subjects in the 2008 BCI-2a competition dataset, including a train dataset and a test dataset collected in other sessions. As a result, the average cross-session recognition accuracy of 78.7% was obtained on nine subjects, with a sliding window length of 1 s, a step length of 0.4 s, and the six windows. Experimental results showed the proposed MTF-CSP outperforming the compared machine learning and CSP-based methods using the original signals or other features such as time-frequency picture features in terms of accuracy. Further, it is shown that the performance of the AS algorithm is significantly better than that of the Max Voting algorithm adopted in other studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助xiaotao采纳,获得10
刚刚
华仔应助选择性哑巴采纳,获得10
刚刚
饱满秋发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
Huck完成签到,获得积分10
3秒前
毛豆应助迷路中的骑手采纳,获得10
4秒前
星辰大海应助zxh采纳,获得10
4秒前
5秒前
桃井尤川完成签到,获得积分10
5秒前
娃哈哈完成签到,获得积分20
5秒前
orixero应助周zhou采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
坦率的寻菱完成签到,获得积分10
8秒前
Tingshan发布了新的文献求助20
8秒前
活力听兰发布了新的文献求助10
9秒前
Orange应助cst采纳,获得10
9秒前
10秒前
Ava应助Suki采纳,获得10
11秒前
zbd发布了新的文献求助10
11秒前
小灰灰发布了新的文献求助10
12秒前
12秒前
12秒前
琳琳发布了新的文献求助10
12秒前
科研通AI5应助lotus777采纳,获得10
13秒前
13秒前
14秒前
14秒前
Nanana发布了新的文献求助10
15秒前
Hideyuki发布了新的文献求助10
15秒前
顾矜应助江峰采纳,获得10
15秒前
lucky完成签到 ,获得积分10
16秒前
16秒前
火星上的菲鹰应助玛奇朵采纳,获得10
17秒前
17秒前
JamesPei应助长情胡萝卜采纳,获得30
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3568961
求助须知:如何正确求助?哪些是违规求助? 3140459
关于积分的说明 9437519
捐赠科研通 2841397
什么是DOI,文献DOI怎么找? 1561669
邀请新用户注册赠送积分活动 730570
科研通“疑难数据库(出版商)”最低求助积分说明 718144