Light-DehazeNet: A Novel Lightweight CNN Architecture for Single Image Dehazing

计算机科学 人工智能 卷积神经网络 稳健性(进化) 计算机视觉 能见度 目标检测 水准点(测量) 自动化 图像质量 深度学习 分割 图像(数学) 工程类 机械工程 基因 光学 物理 生物化学 化学 地理 大地测量学
作者
Hayat Ullah,Khan Muhammad,Muhammad Irfan,Saeed Anwar,Muhammad Sajjad,Ali Shariq Imran,Victor Hugo C. de Albuquerque
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8968-8982 被引量:50
标识
DOI:10.1109/tip.2021.3116790
摘要

Due to the rapid development of artificial intelligence technology, industrial sectors are revolutionizing in automation, reliability, and robustness, thereby significantly increasing quality and productivity. Most of the surveillance and industrial sectors are monitored by visual sensor networks capturing different surrounding environment images. However, during tempestuous weather conditions, the visual quality of the images is reduced due to contaminated suspended atmospheric particles that affect the overall surveillance systems. To tackle these challenges, this article presents a computationally efficient lightweight convolutional neural network referred to as Light-DehazeNet (LD-Net) for the reconstruction of hazy images. Unlike other learning-based approaches, which separately measure the transmission map and the atmospheric light, our proposed LD-Net jointly estimates both the transmission map and the atmospheric light using a transformed atmospheric scattering model. Furthermore, a color visibility restoration method is proposed to evade the color distortion in the dehaze image. Finally, we conduct extensive experiments using synthetic and natural hazy images. The quantitative and qualitative evaluation on different benchmark hazy datasets verify the superiority of the proposed method over other state-of-the-art image dehazing techniques. Moreover, additional experimentation validates the applicability of the proposed method in the object detection tasks. Considering the lightweight architecture with minimal computational cost, the proposed system is encouraged to be incorporated as an integral part of the vision-based monitoring systems to improve the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z1x9ln完成签到,获得积分10
2秒前
6秒前
yehaidadao完成签到,获得积分10
7秒前
111发布了新的文献求助10
9秒前
hj456完成签到,获得积分10
10秒前
10秒前
SIRT1发布了新的文献求助10
10秒前
15秒前
泡泡驳回了今后应助
16秒前
NexusExplorer应助SIRT1采纳,获得10
17秒前
0128lun完成签到,获得积分10
17秒前
lhuh发布了新的文献求助10
18秒前
kyt完成签到 ,获得积分10
18秒前
隐形之玉发布了新的文献求助10
19秒前
yaoccccchen完成签到,获得积分10
20秒前
zhaoyang完成签到 ,获得积分10
20秒前
111完成签到,获得积分10
20秒前
慕青应助不许内耗采纳,获得10
25秒前
啦啦啦发布了新的文献求助10
25秒前
感谢有你完成签到 ,获得积分10
26秒前
稳重的山柏完成签到 ,获得积分20
27秒前
27秒前
yif完成签到 ,获得积分10
28秒前
sherry221应助strings采纳,获得20
28秒前
奇奇吃面发布了新的文献求助10
30秒前
小卷粉完成签到 ,获得积分10
34秒前
刘小天完成签到,获得积分10
34秒前
34秒前
37秒前
rhc完成签到,获得积分10
38秒前
yiyi131发布了新的文献求助10
39秒前
39秒前
淡淡一凤发布了新的文献求助10
41秒前
windcreator发布了新的文献求助10
43秒前
科研通AI2S应助忧虑的访梦采纳,获得10
43秒前
CipherSage应助李瑞采纳,获得10
47秒前
搜集达人应助lily88采纳,获得10
47秒前
深情安青应助笨笨洙采纳,获得10
49秒前
老迟到的土豆完成签到 ,获得积分10
49秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023