Light-DehazeNet: A Novel Lightweight CNN Architecture for Single Image Dehazing

计算机科学 人工智能 卷积神经网络 稳健性(进化) 计算机视觉 能见度 目标检测 水准点(测量) 自动化 图像质量 深度学习 分割 图像(数学) 工程类 机械工程 基因 光学 物理 生物化学 化学 地理 大地测量学
作者
Hayat Ullah,Khan Muhammad,Muhammad Irfan,Saeed Anwar,Muhammad Sajjad,Ali Shariq Imran,Victor Hugo C. de Albuquerque
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8968-8982 被引量:50
标识
DOI:10.1109/tip.2021.3116790
摘要

Due to the rapid development of artificial intelligence technology, industrial sectors are revolutionizing in automation, reliability, and robustness, thereby significantly increasing quality and productivity. Most of the surveillance and industrial sectors are monitored by visual sensor networks capturing different surrounding environment images. However, during tempestuous weather conditions, the visual quality of the images is reduced due to contaminated suspended atmospheric particles that affect the overall surveillance systems. To tackle these challenges, this article presents a computationally efficient lightweight convolutional neural network referred to as Light-DehazeNet (LD-Net) for the reconstruction of hazy images. Unlike other learning-based approaches, which separately measure the transmission map and the atmospheric light, our proposed LD-Net jointly estimates both the transmission map and the atmospheric light using a transformed atmospheric scattering model. Furthermore, a color visibility restoration method is proposed to evade the color distortion in the dehaze image. Finally, we conduct extensive experiments using synthetic and natural hazy images. The quantitative and qualitative evaluation on different benchmark hazy datasets verify the superiority of the proposed method over other state-of-the-art image dehazing techniques. Moreover, additional experimentation validates the applicability of the proposed method in the object detection tasks. Considering the lightweight architecture with minimal computational cost, the proposed system is encouraged to be incorporated as an integral part of the vision-based monitoring systems to improve the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助77采纳,获得10
刚刚
单薄不惜完成签到,获得积分10
1秒前
77发布了新的文献求助10
2秒前
落雨发布了新的文献求助10
2秒前
2秒前
3秒前
斯文问旋完成签到,获得积分10
3秒前
lvsehx发布了新的文献求助10
3秒前
pophoo完成签到,获得积分10
3秒前
4秒前
ck完成签到,获得积分20
5秒前
cruise发布了新的文献求助10
5秒前
真实的语堂完成签到,获得积分10
5秒前
6秒前
开心青柏完成签到 ,获得积分10
7秒前
JamesPei应助聂国烽采纳,获得50
8秒前
研友_LMBa6n发布了新的文献求助10
8秒前
8秒前
乐乐应助TIANCAI采纳,获得10
9秒前
香菜掰掰关注了科研通微信公众号
11秒前
煎饼狗子发布了新的文献求助10
11秒前
犹豫的牛排完成签到,获得积分10
12秒前
77完成签到,获得积分10
12秒前
14秒前
111完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助诺诺采纳,获得10
16秒前
hujuan完成签到 ,获得积分10
18秒前
小二郎应助眯眯眼的惜芹采纳,获得10
19秒前
曾阿牛发布了新的文献求助10
19秒前
研友_LMBa6n发布了新的文献求助10
21秒前
22秒前
小明应助阳光羽毛采纳,获得10
23秒前
24秒前
曾阿牛完成签到,获得积分20
27秒前
27秒前
27秒前
28秒前
背后如雪发布了新的文献求助10
29秒前
29秒前
777发布了新的文献求助10
30秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972