已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of response after cardiac resynchronization therapy with machine learning.

医学 心脏再同步化治疗 内科学 心脏病学 心力衰竭 QRS波群 射血分数 左束支阻滞
作者
Yixiu Liang,Ruifeng Ding,Jingfeng Wang,Xue Gong,Ziqing Yu,Lei Pan,Jingjuan Huang,Ruo-Gu Li,Yangang Su,Sibo Zhu,Junbo Ge
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:344: 120-126 被引量:2
标识
DOI:10.1016/j.ijcard.2021.09.049
摘要

Abstract Aims Nearly one third of patients receiving cardiac resynchronization therapy (CRT) suffer non-response. We intend to develop predictive models using machine learning (ML) approaches and easily attainable features before CRT implantation. Methods and results The baseline characteristics of 752 CRT recipients from two hospitals were retrospectively collected. Nine ML predictive models were established, including logistic regression (LR), elastic network (EN), lasso regression (Lasso), ridge regression (Ridge), neural network (NN), support vector machine (SVM), random forest (RF), XGBoost and k-nearest neighbour (k−NN). Sensitivity, specificity, precision, accuracy, F1, log-loss, area under the receiver operating characteristic (AU-ROC), and average precision (AP) of each model were evaluated. AU-ROC was compared between models and the latest guidelines. Six models had an AU-ROC value above 0.75. The LR, EN and Ridge models showed the highest overall predictive power compared with other models with AU-ROC at 0.77. The XGBoost model reached the highest sensitivity at 0.72, while the highest specificity was achieved by Ridge model at 0.92. All ML models achieved higher AU-ROCs that those derived from the latest guidelines (all P  http://www.crt-response.com/ . Conclusions ML algorithms produced efficient predictive models for evaluation of CRT response with features before implantation. Tools developed accordingly could improve the selection of CRT candidates and reduce the incidence of non-response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王逗逗发布了新的文献求助10
1秒前
1秒前
3秒前
handsomecat完成签到,获得积分10
3秒前
liuguoqing发布了新的文献求助10
4秒前
爆米花应助LSS采纳,获得10
5秒前
明亮无颜发布了新的文献求助10
6秒前
乐橙发布了新的文献求助10
8秒前
9秒前
Tuesday发布了新的文献求助10
10秒前
深情安青应助王逗逗采纳,获得10
13秒前
乐橙完成签到,获得积分10
14秒前
哈哈发布了新的文献求助10
14秒前
赘婿应助BioRick采纳,获得10
16秒前
maox1aoxin应助地平采纳,获得30
17秒前
香蕉觅云应助呵呵采纳,获得10
20秒前
21秒前
言堇完成签到 ,获得积分10
21秒前
虚拟的柠檬完成签到,获得积分10
22秒前
领导范儿应助Odingers采纳,获得10
24秒前
cckyt完成签到,获得积分10
25秒前
windtalker发布了新的文献求助10
25秒前
所所应助哈哈采纳,获得10
27秒前
28秒前
王扭扭完成签到,获得积分20
28秒前
李健应助121231233采纳,获得10
28秒前
32秒前
serendipity完成签到 ,获得积分10
32秒前
32秒前
lorenz发布了新的文献求助10
33秒前
呵呵发布了新的文献求助10
37秒前
水牛发布了新的文献求助10
39秒前
39秒前
Akim应助11223344采纳,获得10
40秒前
41秒前
summer完成签到 ,获得积分10
42秒前
back you up应助王扭扭采纳,获得40
43秒前
tangz完成签到,获得积分20
43秒前
潇洒迎夏发布了新的文献求助10
45秒前
水牛完成签到,获得积分20
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962