Multi-label enhancement based self-supervised deep cross-modal hashing

散列函数 计算机科学 人工智能 情态动词 深度学习 模式识别(心理学) 机器学习 化学 计算机安全 高分子化学
作者
Xitao Zou,Song Wu,Erwin M. Bakker,Wang Xin-zhi
出处
期刊:Neurocomputing [Elsevier]
卷期号:467: 138-162 被引量:17
标识
DOI:10.1016/j.neucom.2021.09.053
摘要

Deep cross-modal hashing which integrates deep learning and hashing into cross-modal retrieval, achieves better performance than traditional cross-modal retrieval methods. Nevertheless, most previous deep cross-modal hashing methods only utilize single-class labels to compute the semantic affinity across modalities but overlook the existence of multiple category labels, which can capture the semantic affinity more accurately. Additionally, almost all existing cross-modal hashing methods straightforwardly employ all modalities to learn hash functions but neglect the fact that original instances in all modalities may contain noise. To avoid the above weaknesses, in this paper, a novel multi-label enhancement based self-supervised deep cross-modal hashing (MESDCH) approach is proposed. MESDCH first propose a multi-label semantic affinity preserving module, which uses ReLU transformation to unify the similarities of learned hash representations and the corresponding multi-label semantic affinity of original instances and defines a positive-constraint Kullback–Leibler loss function to preserve their similarity. Then this module is integrated into a self-supervised semantic generation module to further enhance the performance of deep cross-modal hashing. Extensive evaluation experiments on four well-known datasets demonstrate that the proposed MESDCH achieves state-of-the-art performance and outperforms several excellent baseline methods in the application of cross-modal hashing retrieval. Code is available at: https://github.com/SWU-CS-MediaLab/MESDCH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助陈陈采纳,获得10
1秒前
1秒前
wxr发布了新的文献求助10
3秒前
那一年盛夏完成签到,获得积分10
3秒前
Owen应助勤恳冰淇淋采纳,获得30
3秒前
沙xiaohan发布了新的文献求助10
4秒前
4秒前
HappyPlato完成签到,获得积分10
5秒前
范达克完成签到 ,获得积分10
6秒前
556发布了新的文献求助10
6秒前
Orange应助韦娜采纳,获得10
6秒前
6秒前
小二完成签到,获得积分10
7秒前
支半雪发布了新的文献求助10
7秒前
Owen应助心灵美的大地采纳,获得10
8秒前
8秒前
情怀应助琪琪扬扬采纳,获得10
9秒前
9秒前
10秒前
天天快乐应助刘优秀采纳,获得10
10秒前
11秒前
11秒前
13秒前
QQ完成签到,获得积分10
14秒前
16秒前
16秒前
16秒前
科研通AI6应助皮飞111采纳,获得10
16秒前
17秒前
18秒前
徐徐徐徐徐徐徐完成签到,获得积分20
18秒前
houyan发布了新的文献求助10
19秒前
吃饭了发布了新的文献求助10
19秒前
舒适翠柏完成签到 ,获得积分10
19秒前
CodeCraft应助小Z采纳,获得10
20秒前
默默苡发布了新的文献求助10
21秒前
琪琪扬扬发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604