核糖核酸
染色质
非编码RNA
DNA
生物
计算生物学
遗传学
基因组
非编码DNA
碱基对
基因
作者
Andreas Adam Greifenstein,SoYoung Jo,Holger Bierhoff
出处
期刊:Essays in Biochemistry
[Portland Press]
日期:2021-10-01
卷期号:65 (4): 731-740
被引量:5
摘要
The genomes of complex eukaryotes largely contain non-protein-coding DNA, which is pervasively transcribed into a plethora of non-coding RNAs (ncRNAs). The functional importance of many of these ncRNAs has been investigated in the last two decades, revealing their crucial and multifaceted roles in chromatin regulation. A common mode of action of ncRNAs is the recruitment of chromatin modifiers to specific regions in the genome. Whereas many ncRNA-protein interactions have been characterised in detail, binding of ncRNAs to their DNA target sites is much less understood. Recently developed RNA-centric methods have mapped the genome-wide distribution of ncRNAs, however, how ncRNAs achieve locus-specificity remains mainly unresolved. In terms of direct RNA-DNA interactions, two kinds of triple-stranded structures can be formed: R-loops consisting of an RNA:DNA hybrid and a looped out DNA strand, and RNA:DNA triple helices (triplexes), in which the RNA binds to the major groove of the DNA double helix by sequence-specific Hoogsteen base pairing. In this essay, we will review the current knowledge about RNA:DNA triplexes, summarising triplex formation rules, detection methods, and ncRNAs reported to engage in triplexes. While the functional characterisation of RNA:DNA triplexes is still anecdotal, recent advances in high-throughput and computational analyses indicate their widespread distribution in the genome. Thus, we are witnessing a paradigm shift in the appreciation of RNA:DNA triplexes, away from exotic structures towards a prominent mode of ncRNA-chromatin interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI