Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons

丙烷 分离过程 材料科学 化学工程 金属有机骨架 气体分离 电化学 膜技术 纳米技术 化学 有机化学 电极 物理化学 吸附 工程类 冶金 生物化学
作者
Sheng Zhou,Osama Shekhah,Jiangtao Jia,Justyna Czaban‐Jóźwiak,Prashant M. Bhatt,Adrián Ramírez,Jorge Gascón,Mohamed Eddaoudi
出处
期刊:Nature Energy [Springer Nature]
卷期号:6 (9): 882-891 被引量:223
标识
DOI:10.1038/s41560-021-00881-y
摘要

Membrane-based approaches can offer energy-efficient and cost-effective methods for various separation processes. Practical membranes must have high permselectivity at industrially relevant high pressures and under aggressive conditions, and be manufacturable in a scalable and robust fashion. We report a versatile electrochemical directed-assembly strategy to fabricate polycrystalline metal–organic framework membranes for separation of hydrocarbons. We fabricate a series of face-centred cubic metal–organic framework membranes based on 12-connected rare-earth or zirconium hexanuclear clusters with distinct ligands. In particular, the resultant fumarate-based membranes containing contracted triangular apertures as sole entrances to the pore system enable molecular-sieving separation of propylene/propane and butane/isobutane mixtures. Prominently, increasing the feed pressure to the industrially practical value of 7 atm promoted a desired enhancement in both the total flux and separation selectivity. Process design analysis demonstrates that, for propylene/propane separation, the deployment of such face-centred cubic Zr-fumarate-based metal–organic framework membranes in a hybrid membrane–distillation system offers the potential to decrease the energy input by nearly 90% relative to a conventional single distillation process. Metal–organic framework membranes may be able to separate mixtures of hydrocarbons in an energy-efficient manner, but high-quality robust membranes are difficult to prepare. Here, Zhou et al. fabricate high-performance continuous metal–organic framework membranes using an electrochemical method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助变化采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
0227Y发布了新的文献求助10
3秒前
北溟鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
Luna完成签到 ,获得积分10
5秒前
clear完成签到,获得积分20
5秒前
野性的烧鹅完成签到,获得积分10
5秒前
熬夜波比应助hsa_ID采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
北溟鱼发布了新的文献求助10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
jyy应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
July应助科研通管家采纳,获得10
8秒前
July应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
66hbb应助科研通管家采纳,获得10
9秒前
Jingkai应助科研通管家采纳,获得10
9秒前
9秒前
syzsyz完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
ddl7完成签到,获得积分10
10秒前
李健的小迷弟应助朱小燕采纳,获得10
11秒前
zwhy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304