Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes

浆液性液体 卵巢癌 非负矩阵分解 癌症研究 转录组 生物 清除单元格 癌症 计算生物学 医学 肿瘤科 生物信息学 内科学 免疫组织化学 基因 免疫学 基因表达 遗传学 矩阵分解 特征向量 物理 量子力学
作者
Bethany M. Barnes,Louisa Nelson,Anthony Tighe,George J. Burghel,I‐Hsuan Lin,Sudha Desai,Joanne C. McGrail,Robert D. Morgan,Stephen S. Taylor
出处
期刊:Genome Medicine [BioMed Central]
卷期号:13 (1) 被引量:52
标识
DOI:10.1186/s13073-021-00952-5
摘要

Epithelial ovarian cancer (OC) is a heterogenous disease consisting of five major histologically distinct subtypes: high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid (ENOC), clear cell (CCOC) and mucinous (MOC). Although HGSOC is the most prevalent subtype, representing 70-80% of cases, a 2013 landmark study by Domcke et al. found that the most frequently used OC cell lines are not molecularly representative of this subtype. This raises the question, if not HGSOC, from which subtype do these cell lines derive? Indeed, non-HGSOC subtypes often respond poorly to chemotherapy; therefore, representative models are imperative for developing new targeted therapeutics.Non-negative matrix factorisation (NMF) was applied to transcriptomic data from 44 OC cell lines in the Cancer Cell Line Encyclopedia, assessing the quality of clustering into 2-10 groups. Epithelial OC subtypes were assigned to cell lines optimally clustered into five transcriptionally distinct classes, confirmed by integration with subtype-specific mutations. A transcriptional subtype classifier was then developed by trialling three machine learning algorithms using subtype-specific metagenes defined by NMF. The ability of classifiers to predict subtype was tested using RNA sequencing of a living biobank of patient-derived OC models.Application of NMF optimally clustered the 44 cell lines into five transcriptionally distinct groups. Close inspection of orthogonal datasets revealed this five-cluster delineation corresponds to the five major OC subtypes. This NMF-based classification validates the Domcke et al. analysis, in identifying lines most representative of HGSOC, and additionally identifies models representing the four other subtypes. However, NMF of the cell lines into two clusters did not align with the dualistic model of OC and suggests this classification is an oversimplification. Subtype designation of patient-derived models by a random forest transcriptional classifier aligned with prior diagnosis in 76% of unambiguous cases. In cases where there was disagreement, this often indicated potential alternative diagnosis, supported by a review of histological, molecular and clinical features.This robust classification informs the selection of the most appropriate models for all five histotypes. Following further refinement on larger training cohorts, the transcriptional classification may represent a useful tool to support the classification of new model systems of OC subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助ououya采纳,获得10
1秒前
1秒前
共享精神应助科研狗采纳,获得10
1秒前
Crazy_Runner完成签到,获得积分10
1秒前
李小羊完成签到,获得积分10
1秒前
123发布了新的文献求助50
1秒前
VDC应助Rovy采纳,获得30
2秒前
落山姬完成签到,获得积分10
3秒前
邢杨发布了新的文献求助10
3秒前
3秒前
WSDSG完成签到,获得积分10
4秒前
君悦发布了新的文献求助10
4秒前
4秒前
Ava应助朴实的秋采纳,获得10
4秒前
4秒前
如风随水发布了新的文献求助10
4秒前
大马甲发布了新的文献求助10
5秒前
5秒前
wy.he应助YY再摆烂采纳,获得20
6秒前
6秒前
小马甲应助YY再摆烂采纳,获得10
6秒前
乐乐应助pink采纳,获得50
6秒前
6秒前
6秒前
朱丁丁完成签到,获得积分10
6秒前
一天一篇sci完成签到,获得积分10
7秒前
从容幼南完成签到,获得积分10
8秒前
8秒前
阿越应助虚幻的安白采纳,获得10
8秒前
好好完成签到,获得积分10
8秒前
titton发布了新的文献求助10
8秒前
KEYAN完成签到,获得积分10
9秒前
9秒前
共享精神应助Mmmm采纳,获得10
10秒前
10秒前
10秒前
一二发布了新的文献求助10
11秒前
完美世界应助开心potato采纳,获得10
11秒前
F少完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558