Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes

浆液性液体 卵巢癌 非负矩阵分解 癌症研究 转录组 生物 清除单元格 癌症 计算生物学 医学 肿瘤科 生物信息学 内科学 免疫组织化学 基因 免疫学 基因表达 遗传学 矩阵分解 特征向量 物理 量子力学
作者
Bethany M. Barnes,Louisa Nelson,Anthony Tighe,George J. Burghel,I‐Hsuan Lin,Sudha Desai,Joanne C. McGrail,Robert D. Morgan,Stephen S. Taylor
出处
期刊:Genome Medicine [Springer Nature]
卷期号:13 (1) 被引量:52
标识
DOI:10.1186/s13073-021-00952-5
摘要

Epithelial ovarian cancer (OC) is a heterogenous disease consisting of five major histologically distinct subtypes: high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid (ENOC), clear cell (CCOC) and mucinous (MOC). Although HGSOC is the most prevalent subtype, representing 70-80% of cases, a 2013 landmark study by Domcke et al. found that the most frequently used OC cell lines are not molecularly representative of this subtype. This raises the question, if not HGSOC, from which subtype do these cell lines derive? Indeed, non-HGSOC subtypes often respond poorly to chemotherapy; therefore, representative models are imperative for developing new targeted therapeutics.Non-negative matrix factorisation (NMF) was applied to transcriptomic data from 44 OC cell lines in the Cancer Cell Line Encyclopedia, assessing the quality of clustering into 2-10 groups. Epithelial OC subtypes were assigned to cell lines optimally clustered into five transcriptionally distinct classes, confirmed by integration with subtype-specific mutations. A transcriptional subtype classifier was then developed by trialling three machine learning algorithms using subtype-specific metagenes defined by NMF. The ability of classifiers to predict subtype was tested using RNA sequencing of a living biobank of patient-derived OC models.Application of NMF optimally clustered the 44 cell lines into five transcriptionally distinct groups. Close inspection of orthogonal datasets revealed this five-cluster delineation corresponds to the five major OC subtypes. This NMF-based classification validates the Domcke et al. analysis, in identifying lines most representative of HGSOC, and additionally identifies models representing the four other subtypes. However, NMF of the cell lines into two clusters did not align with the dualistic model of OC and suggests this classification is an oversimplification. Subtype designation of patient-derived models by a random forest transcriptional classifier aligned with prior diagnosis in 76% of unambiguous cases. In cases where there was disagreement, this often indicated potential alternative diagnosis, supported by a review of histological, molecular and clinical features.This robust classification informs the selection of the most appropriate models for all five histotypes. Following further refinement on larger training cohorts, the transcriptional classification may represent a useful tool to support the classification of new model systems of OC subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
思源应助白介素-11采纳,获得10
2秒前
wxy完成签到,获得积分10
3秒前
123成果完成签到 ,获得积分10
4秒前
如飘瑞雪发布了新的文献求助10
5秒前
7秒前
7秒前
见青山发布了新的文献求助10
8秒前
wanci应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI2S应助伊伊采纳,获得10
10秒前
向阳而生o完成签到,获得积分10
11秒前
Winner发布了新的文献求助10
12秒前
CipherSage应助啦啦啦采纳,获得10
12秒前
ooneakind发布了新的文献求助10
12秒前
14秒前
辰星完成签到 ,获得积分10
15秒前
云瑾应助Darlin采纳,获得10
15秒前
ziqiwang发布了新的文献求助10
15秒前
17秒前
Jasper应助Pooh采纳,获得10
17秒前
完美芹发布了新的文献求助10
17秒前
Owen应助xcc采纳,获得10
18秒前
岁聿云暮完成签到,获得积分10
19秒前
好嘞行完成签到,获得积分10
19秒前
奶姜发布了新的文献求助10
22秒前
六个核桃手拉手完成签到 ,获得积分10
23秒前
健壮丹妗完成签到 ,获得积分10
23秒前
Mryuan完成签到,获得积分10
24秒前
yuyuyuan发布了新的文献求助10
25秒前
完美芹完成签到,获得积分10
26秒前
30秒前
快乐小狗发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919