亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Etemadi multiple linear regression

一般化 可靠性(半导体) 计算机科学 线性回归 回归分析 水准点(测量) 航程(航空) 数据挖掘 线性模型 回归 最大化 机器学习 统计 数学 数学优化 工程类 航空航天工程 数学分析 功率(物理) 物理 量子力学 地理 大地测量学
作者
Sepideh Etemadi,Mehdi Khashei
出处
期刊:Measurement [Elsevier BV]
卷期号:186: 110080-110080 被引量:38
标识
DOI:10.1016/j.measurement.2021.110080
摘要

Regression modeling is one of the most widely used statistical processes to estimate the relationships between dependent and independent variables, which have been frequently applied in a wide range of applications successfully. This method includes many techniques for modeling and analyzing several variables to cover real-world problems. The performance basis in conventional regression modeling is based on the assumption that maximum accuracy in inaccessible data is obtained from models with the least amount of error in modeling available data. In this type of regression modeling, in order to maximize the generalization ability of simulations, which are the main factor influencing the quality of decisions made in real-world problems, the principle of maximization of the accuracy of available historical data is used. However, in this type of modeling process, the model's reliability and results have not been considered. On the other, the generalization capability of a model is simultaneously dependent on the accuracy of the model and the reliability level of the accuracy. In this paper, a new methodology is proposed for multiple linear regression (MLR) modeling in which in contrast to traditionally developed models, the models' reliability is maximized instead of its accuracy. To comprehensively evaluate the proposed model's performance, 30 benchmark data sets are considered from the UCI. Empirical results indicate that, from a general perspective, in 19 cases, i.e., 63.333% of cases, the proposed model has better generalization ability than traditional ones. It is clearly illustrated the importance of the reliability of results and their accuracy that is considered in none of the conventional MLR modeling procedures. Therefore, the proposed MLR model can be regarded as an appropriate alternative in modeling fields, especially when more generalization is desired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的踏歌完成签到,获得积分10
2秒前
4秒前
8秒前
苏雅霏完成签到 ,获得积分10
10秒前
39秒前
44秒前
清爽的冬寒完成签到 ,获得积分10
44秒前
Mine发布了新的文献求助30
48秒前
51秒前
55秒前
ding应助盛夏如花采纳,获得10
56秒前
罗舒发布了新的文献求助10
56秒前
57秒前
miurny发布了新的文献求助10
1分钟前
Ying发布了新的文献求助10
1分钟前
1分钟前
DrN完成签到 ,获得积分10
1分钟前
miurny完成签到,获得积分10
1分钟前
852应助高贵的诗翠采纳,获得10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
yangzai完成签到 ,获得积分10
1分钟前
耐斯糖完成签到 ,获得积分10
1分钟前
1分钟前
简单的沛蓝完成签到 ,获得积分10
1分钟前
Hesper完成签到 ,获得积分10
1分钟前
2分钟前
SciGPT应助_ban采纳,获得10
2分钟前
从容成危发布了新的文献求助10
2分钟前
SciGPT应助我的小k8采纳,获得10
2分钟前
qx完成签到 ,获得积分10
2分钟前
Summer完成签到 ,获得积分10
2分钟前
伯云完成签到,获得积分10
2分钟前
零度完成签到 ,获得积分10
2分钟前
行舟完成签到 ,获得积分10
2分钟前
2分钟前
我的小k8发布了新的文献求助10
2分钟前
2分钟前
零度发布了新的文献求助20
2分钟前
我的小k8完成签到,获得积分10
2分钟前
陶一二完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965636
求助须知:如何正确求助?哪些是违规求助? 3510880
关于积分的说明 11155473
捐赠科研通 3245347
什么是DOI,文献DOI怎么找? 1792850
邀请新用户注册赠送积分活动 874146
科研通“疑难数据库(出版商)”最低求助积分说明 804211