Etemadi multiple linear regression

一般化 可靠性(半导体) 计算机科学 线性回归 回归分析 水准点(测量) 航程(航空) 数据挖掘 线性模型 回归 最大化 机器学习 统计 数学 数学优化 工程类 航空航天工程 数学分析 功率(物理) 物理 量子力学 地理 大地测量学
作者
Sepideh Etemadi,Mehdi Khashei
出处
期刊:Measurement [Elsevier]
卷期号:186: 110080-110080 被引量:38
标识
DOI:10.1016/j.measurement.2021.110080
摘要

Regression modeling is one of the most widely used statistical processes to estimate the relationships between dependent and independent variables, which have been frequently applied in a wide range of applications successfully. This method includes many techniques for modeling and analyzing several variables to cover real-world problems. The performance basis in conventional regression modeling is based on the assumption that maximum accuracy in inaccessible data is obtained from models with the least amount of error in modeling available data. In this type of regression modeling, in order to maximize the generalization ability of simulations, which are the main factor influencing the quality of decisions made in real-world problems, the principle of maximization of the accuracy of available historical data is used. However, in this type of modeling process, the model's reliability and results have not been considered. On the other, the generalization capability of a model is simultaneously dependent on the accuracy of the model and the reliability level of the accuracy. In this paper, a new methodology is proposed for multiple linear regression (MLR) modeling in which in contrast to traditionally developed models, the models' reliability is maximized instead of its accuracy. To comprehensively evaluate the proposed model's performance, 30 benchmark data sets are considered from the UCI. Empirical results indicate that, from a general perspective, in 19 cases, i.e., 63.333% of cases, the proposed model has better generalization ability than traditional ones. It is clearly illustrated the importance of the reliability of results and their accuracy that is considered in none of the conventional MLR modeling procedures. Therefore, the proposed MLR model can be regarded as an appropriate alternative in modeling fields, especially when more generalization is desired.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵完成签到 ,获得积分10
刚刚
2秒前
3秒前
5秒前
CA发布了新的文献求助10
5秒前
哆来咪发布了新的文献求助20
5秒前
无花果应助syy080837采纳,获得10
6秒前
6秒前
草中有粑粑完成签到,获得积分10
6秒前
白子双发布了新的文献求助10
6秒前
9秒前
10秒前
11秒前
coffee发布了新的文献求助10
11秒前
13秒前
诸葛语琴完成签到,获得积分10
14秒前
12121发布了新的文献求助10
16秒前
Kenny发布了新的文献求助10
17秒前
syy080837发布了新的文献求助10
19秒前
星辰大海应助埃森采纳,获得10
23秒前
Kenny完成签到,获得积分10
25秒前
学术混子雷雷雷雷雷完成签到,获得积分10
28秒前
huang完成签到,获得积分10
29秒前
33秒前
往事不可挽回完成签到 ,获得积分10
35秒前
王英俊完成签到,获得积分10
37秒前
小马甲应助GongSyi采纳,获得10
39秒前
梧桐发布了新的文献求助10
39秒前
土豆丝关注了科研通微信公众号
41秒前
syy080837完成签到,获得积分10
43秒前
wxyshare举报小巧初露求助涉嫌违规
44秒前
天天快乐应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
孙_boss完成签到 ,获得积分10
44秒前
Mic应助科研通管家采纳,获得10
44秒前
44秒前
浮游应助科研通管家采纳,获得10
45秒前
李健应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915