Etemadi multiple linear regression

一般化 可靠性(半导体) 计算机科学 线性回归 回归分析 水准点(测量) 航程(航空) 数据挖掘 线性模型 回归 最大化 机器学习 统计 数学 数学优化 工程类 航空航天工程 数学分析 功率(物理) 物理 量子力学 地理 大地测量学
作者
Sepideh Etemadi,Mehdi Khashei
出处
期刊:Measurement [Elsevier]
卷期号:186: 110080-110080 被引量:38
标识
DOI:10.1016/j.measurement.2021.110080
摘要

Regression modeling is one of the most widely used statistical processes to estimate the relationships between dependent and independent variables, which have been frequently applied in a wide range of applications successfully. This method includes many techniques for modeling and analyzing several variables to cover real-world problems. The performance basis in conventional regression modeling is based on the assumption that maximum accuracy in inaccessible data is obtained from models with the least amount of error in modeling available data. In this type of regression modeling, in order to maximize the generalization ability of simulations, which are the main factor influencing the quality of decisions made in real-world problems, the principle of maximization of the accuracy of available historical data is used. However, in this type of modeling process, the model's reliability and results have not been considered. On the other, the generalization capability of a model is simultaneously dependent on the accuracy of the model and the reliability level of the accuracy. In this paper, a new methodology is proposed for multiple linear regression (MLR) modeling in which in contrast to traditionally developed models, the models' reliability is maximized instead of its accuracy. To comprehensively evaluate the proposed model's performance, 30 benchmark data sets are considered from the UCI. Empirical results indicate that, from a general perspective, in 19 cases, i.e., 63.333% of cases, the proposed model has better generalization ability than traditional ones. It is clearly illustrated the importance of the reliability of results and their accuracy that is considered in none of the conventional MLR modeling procedures. Therefore, the proposed MLR model can be regarded as an appropriate alternative in modeling fields, especially when more generalization is desired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hanny发布了新的文献求助10
2秒前
2秒前
kacey发布了新的文献求助10
4秒前
无敌龙傲天完成签到,获得积分10
6秒前
7秒前
Vashon完成签到,获得积分10
7秒前
米玄完成签到,获得积分10
8秒前
8秒前
8秒前
wry发布了新的文献求助30
8秒前
NexusExplorer应助kacey采纳,获得10
10秒前
小蘑菇应助咩咩采纳,获得10
11秒前
11秒前
12秒前
丁宇卓发布了新的文献求助10
12秒前
HenrySheng完成签到,获得积分10
13秒前
月亮发布了新的文献求助10
15秒前
汪少侠完成签到,获得积分10
16秒前
17秒前
lll完成签到 ,获得积分10
18秒前
lin完成签到,获得积分10
18秒前
bei完成签到,获得积分10
22秒前
22秒前
hjc发布了新的文献求助20
22秒前
科研顺利完成签到,获得积分10
25秒前
曦月关注了科研通微信公众号
26秒前
终点站完成签到,获得积分10
26秒前
28秒前
haowu发布了新的文献求助10
32秒前
Hu完成签到,获得积分10
32秒前
秀丽青枫完成签到 ,获得积分10
33秒前
33秒前
Ayan完成签到,获得积分10
35秒前
36秒前
36秒前
情怀应助想象之中采纳,获得10
37秒前
充电宝应助sinmden采纳,获得10
38秒前
39秒前
上官若男应助无敌龙傲天采纳,获得10
39秒前
咩咩发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919