Etemadi multiple linear regression

一般化 可靠性(半导体) 计算机科学 线性回归 回归分析 水准点(测量) 航程(航空) 数据挖掘 线性模型 回归 最大化 机器学习 统计 数学 数学优化 工程类 航空航天工程 数学分析 功率(物理) 物理 量子力学 地理 大地测量学
作者
Sepideh Etemadi,Mehdi Khashei
出处
期刊:Measurement [Elsevier]
卷期号:186: 110080-110080 被引量:38
标识
DOI:10.1016/j.measurement.2021.110080
摘要

Regression modeling is one of the most widely used statistical processes to estimate the relationships between dependent and independent variables, which have been frequently applied in a wide range of applications successfully. This method includes many techniques for modeling and analyzing several variables to cover real-world problems. The performance basis in conventional regression modeling is based on the assumption that maximum accuracy in inaccessible data is obtained from models with the least amount of error in modeling available data. In this type of regression modeling, in order to maximize the generalization ability of simulations, which are the main factor influencing the quality of decisions made in real-world problems, the principle of maximization of the accuracy of available historical data is used. However, in this type of modeling process, the model's reliability and results have not been considered. On the other, the generalization capability of a model is simultaneously dependent on the accuracy of the model and the reliability level of the accuracy. In this paper, a new methodology is proposed for multiple linear regression (MLR) modeling in which in contrast to traditionally developed models, the models' reliability is maximized instead of its accuracy. To comprehensively evaluate the proposed model's performance, 30 benchmark data sets are considered from the UCI. Empirical results indicate that, from a general perspective, in 19 cases, i.e., 63.333% of cases, the proposed model has better generalization ability than traditional ones. It is clearly illustrated the importance of the reliability of results and their accuracy that is considered in none of the conventional MLR modeling procedures. Therefore, the proposed MLR model can be regarded as an appropriate alternative in modeling fields, especially when more generalization is desired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
2秒前
Jenny发布了新的文献求助10
4秒前
4秒前
完美凝竹发布了新的文献求助10
4秒前
我是站长才怪应助细腻沅采纳,获得10
5秒前
JG完成签到 ,获得积分10
5秒前
hhh完成签到,获得积分20
5秒前
科研通AI5应助想瘦的海豹采纳,获得10
6秒前
随性完成签到 ,获得积分10
6秒前
自由的信仰完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
夏夏发布了新的文献求助10
11秒前
打打应助Hangerli采纳,获得10
13秒前
完美凝竹完成签到,获得积分10
14秒前
zfzf0422发布了新的文献求助10
15秒前
蜘蛛道理完成签到 ,获得积分10
15秒前
冷傲迎梦发布了新的文献求助10
16秒前
852应助MEME采纳,获得10
16秒前
Godzilla发布了新的文献求助10
16秒前
大模型应助咕噜仔采纳,获得10
17秒前
蒋时晏应助pharmstudent采纳,获得30
17秒前
18秒前
忘羡222发布了新的文献求助20
19秒前
魏伯安发布了新的文献求助10
19秒前
20秒前
不爱吃糖完成签到,获得积分10
20秒前
21秒前
balabala发布了新的文献求助10
22秒前
睿123456完成签到,获得积分10
23秒前
此话当真完成签到,获得积分10
24秒前
26秒前
慕青应助wmmm采纳,获得10
27秒前
科研通AI2S应助夏夏采纳,获得10
27秒前
隐形曼青应助夏夏采纳,获得10
27秒前
睿123456发布了新的文献求助10
27秒前
Godzilla完成签到,获得积分10
27秒前
李健应助ponyy采纳,获得30
27秒前
科研通AI5应助skier采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824