已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An efficient simulation-optimization approach based on genetic algorithms and hydrologic modeling to assist in identifying optimal low impact development designs

优化设计 数学优化 多目标优化 替代模型
作者
Moana Duarte Lopes,Gustavo Barbosa Lima da Silva
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:216: 104251- 被引量:1
标识
DOI:10.1016/j.landurbplan.2021.104251
摘要

Abstract High rates of soil imperviousness, intensified by urbanization, have been contributing strongly to the occurrence of floods all over the world. To mitigate these impacts, Low Impact Development (LID) techniques seek to preserve the hydrology of urban catchments closer to pre-development conditions by using distributed stormwater control systems. Nevertheless, the application of these techniques is associated with a variety of challenges, including the design of the LID controls, due to the significant number of variables involved and the need to attend to multiple objectives simultaneously. In this context, the application of hydrologic simulation models integrated with optimization techniques has been recently explored as an alternative to assist in planning LID scenarios. This work aims to verify the applicability of an adaptation of the Genetic Algorithm NSGA-II, together with the hydrologic model SWMM, to assist the optimal design of a LID scenario seeking to reduce the stormwater runoff and the total costs on different return periods. This scenario has considered the combined implementation of permeable pavements, green roofs and bioretention cells. The results showed that the model was capable of finding a great variety of optimal solutions on various levels of runoff reduction, at different costs, for all return periods considered. Regarding the applicability of the optimization model as a LID design method, some limitations were found related to practical applications and possible oversizing of the subjacent layers of the LIDs. Therefore, suggestions on how to improve the model have been made to solve the identified problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yxxxxy发布了新的文献求助10
刚刚
redstone完成签到,获得积分10
3秒前
5秒前
追风少年应助hantuo采纳,获得10
5秒前
Ava应助仁爱柠檬采纳,获得10
6秒前
7秒前
7秒前
9秒前
欢呼的井发布了新的文献求助10
9秒前
ding应助第七个星球采纳,获得10
11秒前
tt发布了新的文献求助10
12秒前
liuliqiong发布了新的文献求助10
12秒前
大耳蚊发布了新的文献求助30
13秒前
彭于晏应助可爱紫伊采纳,获得10
13秒前
浮世清欢发布了新的文献求助10
13秒前
14秒前
16秒前
17秒前
852应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
小明应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
思源应助唐泽雪穗采纳,获得10
19秒前
ding应助唐泽雪穗采纳,获得10
19秒前
星辰大海应助唐泽雪穗采纳,获得10
19秒前
大模型应助唐泽雪穗采纳,获得10
20秒前
大模型应助唐泽雪穗采纳,获得10
20秒前
星辰大海应助唐泽雪穗采纳,获得10
20秒前
斯文败类应助唐泽雪穗采纳,获得10
20秒前
李健应助唐泽雪穗采纳,获得10
20秒前
bkagyin应助唐泽雪穗采纳,获得10
20秒前
上官若男应助唐泽雪穗采纳,获得10
20秒前
超帅的荷花完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993938
求助须知:如何正确求助?哪些是违规求助? 4241656
关于积分的说明 13214726
捐赠科研通 4037024
什么是DOI,文献DOI怎么找? 2208896
邀请新用户注册赠送积分活动 1219743
关于科研通互助平台的介绍 1138129