An efficient simulation-optimization approach based on genetic algorithms and hydrologic modeling to assist in identifying optimal low impact development designs

优化设计 数学优化 多目标优化 替代模型
作者
Moana Duarte Lopes,Gustavo Barbosa Lima da Silva
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:216: 104251- 被引量:1
标识
DOI:10.1016/j.landurbplan.2021.104251
摘要

Abstract High rates of soil imperviousness, intensified by urbanization, have been contributing strongly to the occurrence of floods all over the world. To mitigate these impacts, Low Impact Development (LID) techniques seek to preserve the hydrology of urban catchments closer to pre-development conditions by using distributed stormwater control systems. Nevertheless, the application of these techniques is associated with a variety of challenges, including the design of the LID controls, due to the significant number of variables involved and the need to attend to multiple objectives simultaneously. In this context, the application of hydrologic simulation models integrated with optimization techniques has been recently explored as an alternative to assist in planning LID scenarios. This work aims to verify the applicability of an adaptation of the Genetic Algorithm NSGA-II, together with the hydrologic model SWMM, to assist the optimal design of a LID scenario seeking to reduce the stormwater runoff and the total costs on different return periods. This scenario has considered the combined implementation of permeable pavements, green roofs and bioretention cells. The results showed that the model was capable of finding a great variety of optimal solutions on various levels of runoff reduction, at different costs, for all return periods considered. Regarding the applicability of the optimization model as a LID design method, some limitations were found related to practical applications and possible oversizing of the subjacent layers of the LIDs. Therefore, suggestions on how to improve the model have been made to solve the identified problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
1秒前
听寒发布了新的文献求助10
1秒前
Joan.发布了新的文献求助10
2秒前
kksun完成签到,获得积分10
4秒前
dyyy发布了新的文献求助10
4秒前
hyhyhyhy发布了新的文献求助10
4秒前
羊咩咩完成签到 ,获得积分10
4秒前
6秒前
8秒前
10秒前
10秒前
12秒前
开放夜南发布了新的文献求助10
13秒前
14秒前
雪碧没气完成签到,获得积分10
15秒前
废柴胖鱼发布了新的文献求助10
16秒前
妮妮完成签到,获得积分10
17秒前
17秒前
熊猫骑手完成签到 ,获得积分10
17秒前
17秒前
19秒前
19秒前
xiaobin发布了新的文献求助10
21秒前
充电宝应助cmz采纳,获得10
22秒前
局内人发布了新的文献求助10
23秒前
cylee发布了新的文献求助10
24秒前
可爱的万万亿完成签到,获得积分10
24秒前
25秒前
852应助潇洒的白昼采纳,获得10
26秒前
895_应助树袋熊采纳,获得10
26秒前
上官若男应助飘逸问兰采纳,获得10
26秒前
27秒前
险胜应助dyyy采纳,获得30
28秒前
汉堡包应助局内人采纳,获得10
29秒前
hyhyhyhy发布了新的文献求助10
31秒前
31秒前
cmz发布了新的文献求助10
33秒前
Quenchingstar完成签到,获得积分10
35秒前
36秒前
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310041
求助须知:如何正确求助?哪些是违规求助? 2943138
关于积分的说明 8512742
捐赠科研通 2618304
什么是DOI,文献DOI怎么找? 1431024
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540