An Insulator in Transmission Lines Recognition and Fault Detection Model Based on Improved Faster RCNN

电力传输 故障检测与隔离 卷积神经网络 绝缘体(电) 计算机科学 电子工程 输电线路 计算机视觉 模式识别(心理学) 人工智能 工程类 电气工程 电信 执行机构
作者
Wenqing Zhao,Minfu Xu,Xingfu Cheng,Zhenbing Zhao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-8 被引量:57
标识
DOI:10.1109/tim.2021.3112227
摘要

Insulators are critical electric components in transmission lines. Recognizing insulators and detecting the faults timely and accurately is essential for maintaining the safety and stability of transmission lines. Traditional methods have low accuracy and poor applicability in insulator recognition and fault detection. An insulator recognition and fault detection model was proposed in the paper aiming at improving the insulator recognition and fault detection accuracy. Firstly, based on the Faster Region Convolutional Neural Network (RCNN), the Feature Pyramid Networks (FPN) were used to improve the Faster RCNN model and locate the insulators with complex backgrounds the image. Then, clip the target area to remove the redundant background noise, and apply the HSV (Hue, Saturation and Value) color space adaptive threshold algorithm for image segmentation due to the influence of light, background noise, and shooting angle. Finally, line detection, image rotation, and vertical projection were used to finish the insulator fault detection. The experimental results show that the proposed insulator recognition and fault detection model can recognize the insulators, detect fault types with better accuracy, and achieve a mean Average Precision (mAP) of 90.8% for glass insulators and 91.7% for composite insulators on the testing dataset. Additionally, the proposed method meets the intelligent inspection of insulator faults in transmission lines and has good engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解解闷发布了新的文献求助30
刚刚
小猫咪完成签到,获得积分10
刚刚
李浩杰完成签到,获得积分10
1秒前
小敏完成签到,获得积分10
2秒前
Saraba完成签到,获得积分20
2秒前
Aliya完成签到 ,获得积分10
3秒前
赘婿应助zzm采纳,获得10
4秒前
沸腾的大海完成签到,获得积分10
5秒前
wkjfh应助欢呼小蚂蚁采纳,获得10
5秒前
6秒前
Rose发布了新的文献求助10
6秒前
泡面加蛋完成签到,获得积分10
6秒前
7秒前
西瓜刀完成签到 ,获得积分10
7秒前
帅气的水绿完成签到,获得积分10
8秒前
8秒前
ZZDXXX发布了新的文献求助20
8秒前
平安发布了新的文献求助30
9秒前
9秒前
科研通AI5应助ping采纳,获得10
10秒前
10秒前
Channing_Ho完成签到,获得积分10
11秒前
1717完成签到,获得积分10
11秒前
南汐发布了新的文献求助10
12秒前
ぴいい发布了新的文献求助30
14秒前
pathway发布了新的文献求助10
14秒前
Rose完成签到,获得积分10
15秒前
16秒前
1717发布了新的文献求助30
16秒前
彭于彦祖应助111采纳,获得10
17秒前
洛克完成签到,获得积分10
17秒前
18秒前
希望天下0贩的0应助魏豪采纳,获得10
18秒前
脑洞疼应助YUMI采纳,获得10
19秒前
19秒前
府于杰完成签到,获得积分10
19秒前
st完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735615
求助须知:如何正确求助?哪些是违规求助? 3279407
关于积分的说明 10015071
捐赠科研通 2996100
什么是DOI,文献DOI怎么找? 1643888
邀请新用户注册赠送积分活动 781540
科研通“疑难数据库(出版商)”最低求助积分说明 749423