Automatic 3D Ultrasound Segmentation of Uterus Using Deep Learning

初始化 三维超声 计算机科学 人工智能 分割 计算机视觉 图像分割 矢状面 超声波 医学 放射科 程序设计语言
作者
Bahareh Behboodi,Hassan Rivaz,Susan Lalondrelle,Emma Harris
标识
DOI:10.1109/ius52206.2021.9593671
摘要

On-line segmentation of the uterus can aid effective image-based guidance for precise delivery of dose to the target tissue (the uterocervix) during cervix cancer radiotherapy. 3D ultrasound (US) can be used to image the uterus, however, finding the position of uterine boundary in US images is a challenging task due to large daily positional and shape changes in the uterus, large variation in bladder filling, and the limitations of 3D US images such as low resolution in the elevational direction and imaging aberrations. Previous studies on uterus segmentation mainly focused on developing semi-automatic algorithms where require manual initialization to be done by an expert clinician. Due to limited studies on the automatic 3D uterus segmentation, the aim of the current study was to overcome the need for manual initialization in the semi-automatic algorithms using the recent deep learning-based algorithms. Therefore, we developed 2D UNet-based networks that are trained based on two scenarios. In the first scenario, we trained 3 different networks on each plane (i.e., sagittal, coronal, axial) individually. In the second scenario, our proposed network was trained using all the planes of each 3D volume. Our proposed schematic can overcome the initial manual selection of previous semi-automatic algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助xanderxue采纳,获得10
刚刚
刚刚
晶晶发布了新的文献求助10
刚刚
森森完成签到,获得积分10
1秒前
1秒前
Ava应助温暖的颜演采纳,获得10
1秒前
Ky_Mac应助Lee采纳,获得20
2秒前
ww发布了新的文献求助10
2秒前
2秒前
3秒前
抗氧剂完成签到,获得积分20
4秒前
直率的玉米完成签到 ,获得积分10
4秒前
英俊的铭应助ZMl采纳,获得10
4秒前
4秒前
爆米花应助wh雨采纳,获得10
4秒前
丘比特应助冷水鱼采纳,获得10
4秒前
LiZH完成签到,获得积分10
5秒前
6秒前
传奇3应助ivy采纳,获得10
6秒前
6秒前
Persepolis完成签到,获得积分10
6秒前
mm完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
小蘑菇应助sweettt3采纳,获得10
7秒前
9秒前
花粉过敏发布了新的文献求助10
9秒前
xianglinnnn完成签到,获得积分10
9秒前
陈2026完成签到,获得积分10
9秒前
xmj发布了新的文献求助10
9秒前
9秒前
善学以致用应助脆脆鲨采纳,获得10
9秒前
跳跃完成签到,获得积分10
9秒前
Wang完成签到,获得积分0
11秒前
11秒前
sssssss发布了新的文献求助10
11秒前
扶瑶可接发布了新的文献求助10
11秒前
12秒前
罐装冰块完成签到,获得积分10
12秒前
shiizii应助激昂的吐司采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423