Automatic 3D Ultrasound Segmentation of Uterus Using Deep Learning

初始化 三维超声 计算机科学 人工智能 分割 计算机视觉 图像分割 矢状面 超声波 医学 放射科 程序设计语言
作者
Bahareh Behboodi,Hassan Rivaz,Susan Lalondrelle,Emma Harris
标识
DOI:10.1109/ius52206.2021.9593671
摘要

On-line segmentation of the uterus can aid effective image-based guidance for precise delivery of dose to the target tissue (the uterocervix) during cervix cancer radiotherapy. 3D ultrasound (US) can be used to image the uterus, however, finding the position of uterine boundary in US images is a challenging task due to large daily positional and shape changes in the uterus, large variation in bladder filling, and the limitations of 3D US images such as low resolution in the elevational direction and imaging aberrations. Previous studies on uterus segmentation mainly focused on developing semi-automatic algorithms where require manual initialization to be done by an expert clinician. Due to limited studies on the automatic 3D uterus segmentation, the aim of the current study was to overcome the need for manual initialization in the semi-automatic algorithms using the recent deep learning-based algorithms. Therefore, we developed 2D UNet-based networks that are trained based on two scenarios. In the first scenario, we trained 3 different networks on each plane (i.e., sagittal, coronal, axial) individually. In the second scenario, our proposed network was trained using all the planes of each 3D volume. Our proposed schematic can overcome the initial manual selection of previous semi-automatic algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沉静水儿完成签到,获得积分10
1秒前
liuxianglin2006完成签到,获得积分10
1秒前
思源应助ajjdnd采纳,获得10
2秒前
ssu完成签到,获得积分10
3秒前
3秒前
科研通AI6应助hhh采纳,获得10
3秒前
耿昊发布了新的文献求助10
5秒前
生动安波应助白嫖论文采纳,获得10
5秒前
王佳亮完成签到,获得积分10
5秒前
充电宝应助MCY采纳,获得10
5秒前
beiyoumilu完成签到,获得积分10
7秒前
汉堡包应助QQ采纳,获得10
7秒前
7秒前
yuC驳回了wanci应助
9秒前
9秒前
9秒前
杨胖胖完成签到,获得积分10
10秒前
脑洞疼应助英俊的白安采纳,获得10
11秒前
雨相所至发布了新的文献求助20
12秒前
科研通AI6应助耿昊采纳,获得10
12秒前
古重迷离完成签到 ,获得积分10
12秒前
12秒前
呵呵呵完成签到,获得积分10
13秒前
愉快的犀牛完成签到 ,获得积分10
14秒前
growl发布了新的文献求助10
14秒前
15秒前
15秒前
愉快若烟发布了新的文献求助10
15秒前
整齐的泥猴桃完成签到 ,获得积分10
16秒前
16秒前
18秒前
科研通AI6应助SY采纳,获得10
18秒前
秀丽笑容完成签到,获得积分10
18秒前
19秒前
zz发布了新的文献求助10
19秒前
Hello应助鼻揩了转去采纳,获得10
20秒前
20秒前
斯文败类应助cassie采纳,获得10
20秒前
棕色垂耳兔完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995