Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles

计算机科学 付款 利润(经济学) 互联网 强化学习 过程(计算) 计算机安全 计算机网络 人工智能 万维网 操作系统 经济 微观经济学
作者
Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Le‐Nam Tran,Shimin Gong,Eryk Dutkiewicz
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 2100-2115 被引量:30
标识
DOI:10.1109/tmc.2021.3122436
摘要

Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSP's limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and propose a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSP's limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月影碎星河完成签到,获得积分10
1秒前
1秒前
李健应助祁琪采纳,获得10
2秒前
rainbow5432完成签到 ,获得积分10
3秒前
3秒前
yulong发布了新的文献求助10
3秒前
3秒前
吱吱吱吱完成签到 ,获得积分10
4秒前
kkk驳回了wanci应助
4秒前
4秒前
xgx984完成签到,获得积分10
4秒前
乔滴滴完成签到 ,获得积分10
5秒前
Lin应助阳光襄采纳,获得10
6秒前
斯文败类应助刘畅采纳,获得10
6秒前
学术小白完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
9秒前
9秒前
风中凌旋应助爱在西元前采纳,获得10
9秒前
yulong完成签到,获得积分10
10秒前
小李发布了新的文献求助10
10秒前
10秒前
easy发布了新的文献求助10
10秒前
11秒前
咸蛋黄味曲奇完成签到,获得积分10
12秒前
NexusExplorer应助啾啾采纳,获得10
12秒前
廖怡星完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
sleep应助科研通管家采纳,获得20
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760