亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Slow Video Detection Based on Spatial-Temporal Feature Representation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 空间分析 帧(网络) 分类器(UML) 帧间 特征提取 参考坐标系 数学 电信 哲学 统计 语言学
作者
Junwu Ma,Haichao Yao,Rongrong Ni,Yao Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 298-309
标识
DOI:10.1007/978-3-030-88010-1_25
摘要

As the carrier of information, digital video plays an important role in daily life. With the development of video editing tools, the authenticity of video is facing enormous challenges. As an inter-frame forgery, video speed manipulation may lead to the complete change of the video semantics. In this paper, in order to achieve effective detection for both frame sampling and frame mixing in video slow speed forgery, we proposed a spatial-temporal feature for classification. First, the periodic traces of frame difference are extracted through autocorrelation analysis, and the corresponding coefficients are used as the temporal feature. Secondly, aiming at making full use of the artifacts left in the spatial domain, and overcoming the issue of the temporal feature when the periodic traces are weak, we employ the Markov feature of the frame difference to reveal spatial traces of the forgery and utilize minimum fusion strategy to obtain the video-level spatial feature. Finally, a specific joint spatial-temporal feature is used to detect the slow speed videos through Ensemble classifier. A large number of experiments have proved the superiority of our proposed feature compared with the state-of-the-art method under two kinds of slow speed forgeries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
桥西小河完成签到 ,获得积分10
38秒前
脑洞疼应助怕孤独的怀莲采纳,获得30
57秒前
SUNny发布了新的文献求助10
1分钟前
有米爱吃又桂卷完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助juan采纳,获得10
1分钟前
Bluestar完成签到,获得积分10
1分钟前
SUNny发布了新的文献求助10
2分钟前
2分钟前
大模型应助George采纳,获得10
2分钟前
Lucas应助唐晓秦采纳,获得10
2分钟前
orixero应助纯真的傲玉采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
juan发布了新的文献求助10
2分钟前
帅气书白完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
唐晓秦发布了新的文献求助10
3分钟前
纯真的傲玉完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
顾矜应助SUNny采纳,获得10
3分钟前
东溟渔夫发布了新的文献求助10
4分钟前
河堤完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863398
关于积分的说明 15107870
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581971
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494500