Rice metabolic regulatory network spanning the entire life cycle

生物 代谢组 代谢组学 水稻 转录组 计算生物学 代谢物 代谢途径 生物技术 代谢网络 基因 遗传学 生物信息学 基因表达 生物化学
作者
Chenkun Yang,Shuangqian Shen,Shen Zhou,Yufei Li,Yuyuan Mao,Junjie Zhou,Yuheng Shi,Longxu An,Qianqian Zhou,Wenju Peng,Yuanyuan Lyu,Xuemei Liu,Wei Chen,Shouchuang Wang,Lianghuan Qu,Xianqing Liu,Alisdair R. Fernie,Jie Luo
出处
期刊:Molecular Plant [Elsevier]
卷期号:15 (2): 258-275 被引量:112
标识
DOI:10.1016/j.molp.2021.10.005
摘要

As one of the most important crops in the world, rice (Oryza sativa) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the changes in metabolite abundance across the entire life cycle have not yet been determined. In this study, combining both targeted and nontargeted metabolite profiling methods, a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle. The contents of metabolites in different tissues of rice were significantly different, with various metabolites accumulating in the plumule and radicle during seed germination. Combining these data with transcriptome data obtained from the same time period, we constructed the Rice Metabolic Regulation Network. The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across development. Using this dataset, we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity. This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agronomic traits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三金同学发布了新的文献求助10
1秒前
1秒前
万能图书馆应助杨lei采纳,获得10
1秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
2秒前
2秒前
可爱的函函应助竹萧采纳,获得10
2秒前
英吉利25发布了新的文献求助10
4秒前
小科完成签到,获得积分10
4秒前
敬老院N号发布了新的文献求助10
4秒前
上官若男应助Toma采纳,获得10
4秒前
4秒前
cy发布了新的文献求助30
4秒前
PAUL完成签到,获得积分10
4秒前
玉鱼儿发布了新的文献求助10
5秒前
彪壮的吐司完成签到,获得积分10
5秒前
科研通AI2S应助123采纳,获得80
5秒前
5秒前
5秒前
5秒前
6秒前
zz发布了新的文献求助30
6秒前
Dre4m_Z完成签到,获得积分10
6秒前
7秒前
饶天源发布了新的文献求助10
7秒前
sy发布了新的文献求助10
7秒前
王乾宇发布了新的文献求助10
7秒前
科研通AI6.1应助ww采纳,获得10
7秒前
OvO发布了新的文献求助10
8秒前
沉静的诗桃完成签到,获得积分20
8秒前
8秒前
自然秋双发布了新的文献求助10
8秒前
Akiyuki完成签到,获得积分10
8秒前
愤怒的似狮完成签到,获得积分20
9秒前
9秒前
dere完成签到,获得积分10
9秒前
小龙发布了新的文献求助10
9秒前
xxg完成签到,获得积分10
10秒前
小匡完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805