钝化
纳米晶
材料科学
卤化物
光致发光
钙钛矿(结构)
发光二极管
纳米技术
兴奋剂
光电子学
化学工程
化学
无机化学
工程类
图层(电子)
作者
Huidong Tang,Yanqiao Xu,Xiaobo Hu,Qing Hu,Ting Chen,Weihui Jiang,Lianjun Wang,Lianjun Wang
标识
DOI:10.1002/advs.202004118
摘要
Abstract Lead‐free halide double perovskite (HDP) nanocrystals are considered as one of the most promising alternatives to the lead halide perovskite nanocrystals due to their unique characteristics of nontoxicity, robust intrinsic thermodynamic stability, rich and tunable optoelectronic properties. Although lead‐free HDP variants with highly efficient emission are synthesized and characterized, the photoluminescent (PL) properties of colloidal HDP nanocrystals still have enormous challenges for application in light‐emitting diode (LED) devices due to their intrinsic and surface defects, indirect band, and disallowable optical transitions. Herein, recent progress on the synthetic strategies, ligands passivation, and metal doping/alloying for boosting efficiency and stability of HDP nanocrystals is comprehensive summarized. It begins by introducing the crystalline structure, electronic structure, and PL mechanism of lead‐free HDPs. Next, the limiting factors on PL properties and origins of instability are analyzed, followed by highlighting the effects of synthesis strategies, ligands passivation, and metal doping/alloying on the PL properties and stability of the HDPs. Then, their preliminary applications for LED devices are emphasized. Finally, the challenges and prospects concerning the development of highly efficient and stable HDP nanocrystals‐based LED devices in the future are proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI