Abstract This study was focused on investigating a novel catalytic system for the selective conversion of furfural to maleic acid (MA) in an aqueous system with hydrogen peroxide as an oxidant. A series of experiments that study the impacts of catalyst species, furfural concentration, catalyst dosage, reaction temperature, residue time, hydrogen peroxide concentration, excess water content, and solvent types on the oxidation of furfural to MA was carried out. The results showed that the co-existence of Br- and alkali sites might play a vital role in furfural oxidation, which could improve the MA yield remarkably. Under 90 °C for 3 h, 72.4 % MA yield was obtained with KOH and KBr as co-catalyst in an aqueous phase. Moreover, a possible reaction pathway of furfural oxidation was proposed on the basis of our reaction system.