A Novel Metric to Quantify the Effect of Pathway Enrichment Evaluation With Respect to Biomedical Text-Mined Terms: Development and Feasibility Study

公制(单位) 计算机科学 稳健性(进化) 数据挖掘 药物发现 推论 计算生物学 机器学习 人工智能 生物信息学 生物 基因 生物化学 运营管理 经济
作者
Xuan Qin,Xinzhi Yao,Jingbo Xia
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:9 (6): e28247-e28247 被引量:3
标识
DOI:10.2196/28247
摘要

Background Natural language processing has long been applied in various applications for biomedical knowledge inference and discovery. Enrichment analysis based on named entity recognition is a classic application for inferring enriched associations in terms of specific biomedical entities such as gene, chemical, and mutation. Objective The aim of this study was to investigate the effect of pathway enrichment evaluation with respect to biomedical text-mining results and to develop a novel metric to quantify the effect. Methods Four biomedical text mining methods were selected to represent natural language processing methods on drug-related gene mining. Subsequently, a pathway enrichment experiment was performed by using the mined genes, and a series of inverse pathway frequency (IPF) metrics was proposed accordingly to evaluate the effect of pathway enrichment. Thereafter, 7 IPF metrics and traditional P value metrics were compared in simulation experiments to test the robustness of the proposed metrics. Results IPF metrics were evaluated in a case study of rapamycin-related gene set. By applying the best IPF metrics in a pathway enrichment simulation test, a novel discovery of drug efficacy of rapamycin for breast cancer was replicated from the data chosen prior to the year 2000. Our findings show the effectiveness of the best IPF metric in support of knowledge discovery in new drug use. Further, the mechanism underlying the drug-disease association was visualized by Cytoscape. Conclusions The results of this study suggest the effectiveness of the proposed IPF metrics in pathway enrichment evaluation as well as its application in drug use discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让碧菡完成签到,获得积分10
2秒前
LK完成签到 ,获得积分10
5秒前
DoLaso完成签到,获得积分10
5秒前
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
领导范儿应助1111采纳,获得10
6秒前
a龙完成签到,获得积分10
7秒前
10秒前
cccs发布了新的文献求助10
12秒前
zyy发布了新的文献求助10
13秒前
luqong完成签到,获得积分10
17秒前
dgfhg发布了新的文献求助10
18秒前
HEIKU举报动人的cc求助涉嫌违规
18秒前
文献查找完成签到,获得积分10
18秒前
18秒前
沉积岩完成签到,获得积分10
19秒前
阿伟爱打球完成签到,获得积分10
21秒前
共享精神应助zyy采纳,获得10
22秒前
Ploaris完成签到 ,获得积分10
26秒前
烟花应助迷路的巨人采纳,获得10
29秒前
Owen应助GK采纳,获得10
36秒前
yygz0703完成签到 ,获得积分10
39秒前
夏末的晨曦完成签到,获得积分0
41秒前
松谦发布了新的文献求助10
42秒前
EdenLee完成签到 ,获得积分10
45秒前
ding应助shelmon采纳,获得30
45秒前
chem完成签到,获得积分10
46秒前
47秒前
小二郎应助服部平次采纳,获得10
51秒前
重要忆秋完成签到,获得积分10
51秒前
zyy完成签到,获得积分20
51秒前
52秒前
OKKK发布了新的文献求助10
53秒前
eden完成签到,获得积分10
56秒前
空中风也完成签到 ,获得积分10
56秒前
Ava应助狂野绿竹采纳,获得10
57秒前
QAQSS完成签到 ,获得积分10
58秒前
58秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388