A Novel Metric to Quantify the Effect of Pathway Enrichment Evaluation With Respect to Biomedical Text-Mined Terms: Development and Feasibility Study

公制(单位) 计算机科学 稳健性(进化) 数据挖掘 药物发现 推论 计算生物学 机器学习 人工智能 生物信息学 生物 基因 生物化学 运营管理 经济
作者
Xuan Qin,Xinzhi Yao,Jingbo Xia
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:9 (6): e28247-e28247 被引量:3
标识
DOI:10.2196/28247
摘要

Background Natural language processing has long been applied in various applications for biomedical knowledge inference and discovery. Enrichment analysis based on named entity recognition is a classic application for inferring enriched associations in terms of specific biomedical entities such as gene, chemical, and mutation. Objective The aim of this study was to investigate the effect of pathway enrichment evaluation with respect to biomedical text-mining results and to develop a novel metric to quantify the effect. Methods Four biomedical text mining methods were selected to represent natural language processing methods on drug-related gene mining. Subsequently, a pathway enrichment experiment was performed by using the mined genes, and a series of inverse pathway frequency (IPF) metrics was proposed accordingly to evaluate the effect of pathway enrichment. Thereafter, 7 IPF metrics and traditional P value metrics were compared in simulation experiments to test the robustness of the proposed metrics. Results IPF metrics were evaluated in a case study of rapamycin-related gene set. By applying the best IPF metrics in a pathway enrichment simulation test, a novel discovery of drug efficacy of rapamycin for breast cancer was replicated from the data chosen prior to the year 2000. Our findings show the effectiveness of the best IPF metric in support of knowledge discovery in new drug use. Further, the mechanism underlying the drug-disease association was visualized by Cytoscape. Conclusions The results of this study suggest the effectiveness of the proposed IPF metrics in pathway enrichment evaluation as well as its application in drug use discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱虹遍野完成签到,获得积分10
刚刚
刚刚
QQ完成签到,获得积分10
1秒前
不倦应助MNing采纳,获得10
1秒前
夸克的诗意完成签到,获得积分10
1秒前
小生不才完成签到,获得积分10
1秒前
1秒前
科研通AI6应助duoya采纳,获得10
2秒前
xwxhbydmet发布了新的文献求助10
2秒前
bhc完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助月月采纳,获得10
2秒前
yzy完成签到,获得积分10
2秒前
2秒前
qp发布了新的文献求助10
3秒前
3秒前
liao完成签到,获得积分20
3秒前
yuna_yqc完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
大模型应助吉尼斯贝贝采纳,获得10
4秒前
347发布了新的文献求助20
4秒前
5秒前
alpv完成签到,获得积分10
5秒前
ef完成签到,获得积分10
5秒前
晒晒太阳发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
ZLS发布了新的文献求助10
6秒前
zzbyxh发布了新的文献求助20
6秒前
CNYDNZB发布了新的文献求助10
7秒前
彭于晏应助淡然白安采纳,获得10
7秒前
冷静的冷珍完成签到,获得积分10
7秒前
甜兰儿完成签到,获得积分10
7秒前
稚生w发布了新的文献求助10
8秒前
zz完成签到,获得积分10
8秒前
想吃螺蛳粉完成签到,获得积分10
8秒前
582697438发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284