亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 地质学 物理 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112826-112826 被引量:90
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Owen应助xinchi采纳,获得10
4秒前
小草发布了新的文献求助10
8秒前
xinchi完成签到,获得积分10
12秒前
Jasper应助小泽采纳,获得10
12秒前
hhhhhh应助annathd采纳,获得10
19秒前
清飏举报ni求助涉嫌违规
42秒前
桐桐应助KSung采纳,获得10
50秒前
50秒前
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
wy.he应助陶醉的烤鸡采纳,获得10
56秒前
dlfg完成签到,获得积分10
56秒前
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
KSung发布了新的文献求助10
1分钟前
华仔应助XX采纳,获得10
1分钟前
清飏举报vivianzzz求助涉嫌违规
1分钟前
1分钟前
XX完成签到,获得积分20
1分钟前
2021完成签到 ,获得积分10
1分钟前
XX发布了新的文献求助10
1分钟前
情怀应助ceeray23采纳,获得20
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
小马完成签到,获得积分10
2分钟前
小马发布了新的文献求助10
2分钟前
科目三应助XX采纳,获得10
2分钟前
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
2分钟前
盛夏如花发布了新的文献求助80
2分钟前
2分钟前
aaa5a123完成签到 ,获得积分10
2分钟前
脑洞疼应助粉色大卡皮采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929