亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 地质学 物理 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112826-112826 被引量:58
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当时只道是寻常完成签到,获得积分10
6秒前
小骆完成签到,获得积分10
34秒前
葡萄成熟时完成签到 ,获得积分10
35秒前
这个手刹不太灵完成签到 ,获得积分10
36秒前
淡淡妙竹完成签到 ,获得积分10
40秒前
田様应助优秀夏天采纳,获得10
42秒前
赘婿应助picapica668采纳,获得10
47秒前
jyy完成签到,获得积分10
56秒前
大模型应助壮壮采纳,获得10
56秒前
可靠的电源应助风趣含双采纳,获得20
59秒前
1分钟前
壮壮发布了新的文献求助10
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
ZSJ发布了新的文献求助10
1分钟前
OCDer完成签到,获得积分0
1分钟前
1分钟前
连长完成签到,获得积分10
1分钟前
长情招牌完成签到 ,获得积分10
1分钟前
Starr44发布了新的文献求助10
1分钟前
13134发布了新的文献求助10
1分钟前
xiaogang127完成签到 ,获得积分10
1分钟前
茶茶完成签到,获得积分10
1分钟前
1分钟前
团团团完成签到 ,获得积分10
1分钟前
优秀夏天关注了科研通微信公众号
1分钟前
2分钟前
优秀夏天发布了新的文献求助10
2分钟前
amengptsd完成签到,获得积分10
2分钟前
阿文发布了新的文献求助10
2分钟前
我是老大应助阿文采纳,获得30
2分钟前
巴山石也完成签到 ,获得积分10
2分钟前
DrW1111完成签到,获得积分10
2分钟前
efren1806完成签到,获得积分10
2分钟前
shimly0101xx完成签到,获得积分10
2分钟前
传奇3应助sun采纳,获得10
2分钟前
hhhhhhh完成签到,获得积分10
2分钟前
DreamMaker完成签到 ,获得积分10
2分钟前
小于完成签到,获得积分10
2分钟前
优秀夏天完成签到,获得积分10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139509
求助须知:如何正确求助?哪些是违规求助? 2790383
关于积分的说明 7795098
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146