Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 地质学 物理 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112826-112826 被引量:90
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭静琳发布了新的文献求助10
刚刚
iNk应助瞬间de回眸采纳,获得10
刚刚
爆米花应助Kuhaku采纳,获得20
刚刚
宋佳发布了新的文献求助10
刚刚
刚刚
刚刚
林钟望完成签到,获得积分10
刚刚
1秒前
1秒前
lllisa发布了新的文献求助10
1秒前
Magical发布了新的文献求助10
1秒前
JHK完成签到,获得积分20
1秒前
思源应助Scinature采纳,获得10
1秒前
2秒前
陶醉小笼包完成签到 ,获得积分10
2秒前
2秒前
小包子发布了新的文献求助20
2秒前
自由的夜天完成签到,获得积分20
3秒前
duoduo发布了新的文献求助10
4秒前
4秒前
JHK发布了新的文献求助10
4秒前
23333完成签到,获得积分10
4秒前
Liens发布了新的文献求助10
4秒前
Honahlee发布了新的文献求助10
5秒前
5秒前
HUANG_黄完成签到,获得积分10
5秒前
SS发布了新的文献求助30
5秒前
娇气的妙之完成签到,获得积分10
6秒前
NexusExplorer应助JY采纳,获得10
6秒前
李蕤蕤完成签到,获得积分10
6秒前
7秒前
7秒前
Lucas应助虎啊虎啊采纳,获得10
7秒前
7秒前
7秒前
glacierflame完成签到,获得积分10
8秒前
Morli完成签到,获得积分20
8秒前
呼呼大睡完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836