Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 地质学 物理 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112826-112826 被引量:90
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
虚拟的听筠完成签到,获得积分10
1秒前
2秒前
完美世界应助olive采纳,获得10
3秒前
第三方斯蒂芬完成签到,获得积分10
3秒前
加鱼发布了新的文献求助20
3秒前
vidi发布了新的文献求助10
4秒前
空白发布了新的文献求助10
4秒前
CodeCraft应助淡定的碧空采纳,获得10
4秒前
Jazz33333333完成签到,获得积分10
4秒前
5秒前
核桃发布了新的文献求助10
5秒前
6秒前
华仔应助slay采纳,获得10
6秒前
星辰大海应助酷炫笑翠采纳,获得10
6秒前
小摩尔完成签到 ,获得积分10
7秒前
杨三多发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
竹筏过海应助研友_nPbeR8采纳,获得50
9秒前
11秒前
12秒前
175完成签到,获得积分10
13秒前
13秒前
14秒前
syunlam完成签到,获得积分10
14秒前
15秒前
15秒前
KKK发布了新的文献求助10
16秒前
laurel发布了新的文献求助10
16秒前
小二郎应助强健的元冬采纳,获得10
16秒前
未来EBM给未来EBM的求助进行了留言
17秒前
丘比特应助洁净的千凡采纳,获得10
17秒前
17秒前
lmt完成签到,获得积分10
18秒前
JingjingYao发布了新的文献求助10
18秒前
汉堡包应助柒吾采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901