Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 地质学 物理 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112826-112826 被引量:90
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨澄发布了新的文献求助10
1秒前
1秒前
6666应助激昂的薯片采纳,获得10
1秒前
1秒前
1秒前
2秒前
思源应助单纯的紫易采纳,获得30
2秒前
77发布了新的文献求助10
3秒前
daodao发布了新的文献求助10
3秒前
可爱的函函应助djy采纳,获得10
3秒前
纪糜完成签到,获得积分10
3秒前
Stella应助端午采纳,获得10
3秒前
科目三应助123采纳,获得10
3秒前
wang完成签到 ,获得积分10
3秒前
缥缈逍遥完成签到,获得积分10
3秒前
小小怪下士应助俊逸尔云采纳,获得10
4秒前
单单来迟完成签到,获得积分10
4秒前
Kaligash完成签到,获得积分10
4秒前
Stella应助顿手把其采纳,获得10
4秒前
kfc19960203完成签到,获得积分10
5秒前
脏脏鲤完成签到 ,获得积分10
5秒前
5秒前
sherry发布了新的文献求助10
5秒前
matchstick发布了新的文献求助10
6秒前
Yamsh发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
CherylZhao发布了新的文献求助10
8秒前
上官若男应助快乐寄风采纳,获得10
8秒前
大个应助lkj采纳,获得10
8秒前
Mine_cherry应助huanglie采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
sinmon完成签到,获得积分10
8秒前
8秒前
小白菜发布了新的文献求助20
9秒前
CodeCraft应助怕黑的乐蓉采纳,获得10
9秒前
gsl发布了新的文献求助10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099