Muscle Compensation Analysis During Motion Based on Muscle Functional Network

运动学 补偿(心理学) 肌电图 计算机科学 肌肉疲劳 人工智能 特征(语言学) 物理医学与康复 心理学 医学 物理 语言学 哲学 经典力学 精神分析
作者
Xiaoguang Liu,Boxiong Yang,Tie Liang,Jun Li,Cunguang Lou,Hongrui Wang,Xiuling Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 2370-2378 被引量:3
标识
DOI:10.1109/jsen.2021.3131320
摘要

How to effectively detect muscle compensation caused by exercise fatigue has attracted increasing attention during the last decade, with most previous work being focused on the research of compensatory movement strategy, which indirectly reflecting muscle compensation through the analysis of kinematic data. However, relatively few investigations can be found in the literature for using muscle information to analyze muscle compensation directly. This paper focuses on the muscle compensation analysis based on a 8-channel surface electromyography (sEMG). We investigate the application of complex networks theory in kinematic analysis. Motivated by the good performance of complex networks, we further propose designing the muscle functional network based on sEMG to analyze muscle compensation during exercise, and extract the network features that can reflect the changes of muscle compensation are extracted from the network. Real results from twelve subjects show that muscle functional network can effectively reflect the changes of muscle relationship caused by exercise-induced fatigue. The feature extracted from the muscle network has a high correlation with the feature of muscle fatigue ( $r_{\text{ACC-MDF}}:0.7157$ , $r_{\text{AGE-RMS}}:0.7877$ ), and can be used as a reliable index to analyze muscle compensation changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
辉hui发布了新的文献求助10
1秒前
1秒前
2秒前
哈哈哈发布了新的文献求助10
3秒前
sam发布了新的文献求助10
3秒前
122x完成签到,获得积分10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
4秒前
冷静靖荷应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
虚幻的翎应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
梁朝伟应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
jonghuang发布了新的文献求助10
4秒前
dopamine发布了新的文献求助10
4秒前
1234发布了新的文献求助10
4秒前
雨碎寒江发布了新的文献求助10
4秒前
朴朴呀发布了新的文献求助10
5秒前
6秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490203
求助须知:如何正确求助?哪些是违规求助? 3077204
关于积分的说明 9148048
捐赠科研通 2769368
什么是DOI,文献DOI怎么找? 1519705
邀请新用户注册赠送积分活动 704187
科研通“疑难数据库(出版商)”最低求助积分说明 702113