亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments

计算机科学 强化学习 云计算 工作量 大数据 调度(生产过程) 软件部署 分布式计算 作业车间调度 SPARK(编程语言) 计算机集群 分析 人工智能 操作系统 数据科学 地铁列车时刻表 数学优化 程序设计语言 数学
作者
Muhammed Tawfiqul Islam,Shanika Karunasekera,Rajkumar Buyya
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1695-1710 被引量:55
标识
DOI:10.1109/tpds.2021.3124670
摘要

Big data frameworks such as Spark and Hadoop are widely adopted to run analytics jobs in both research and industry. Cloud offers affordable compute resources which are easier to manage. Hence, many organizations are shifting towards a cloud deployment of their big data computing clusters. However, job scheduling is a complex problem in the presence of various Service Level Agreement (SLA) objectives such as monetary cost reduction, and job performance improvement. Most of the existing research does not address multiple objectives together and fail to capture the inherent cluster and workload characteristics. In this article, we formulate the job scheduling problem of a cloud-deployed Spark cluster and propose a novel Reinforcement Learning (RL) model to accommodate the SLA objectives. We develop the RL cluster environment and implement two Deep Reinforce Learning (DRL) based schedulers in TF-Agents framework. The proposed DRL-based scheduling agents work at a fine-grained level to place the executors of jobs while leveraging the pricing model of cloud VM instances. In addition, the DRL-based agents can also learn the inherent characteristics of different types of jobs to find a proper placement to reduce both the total cluster VM usage cost and the average job duration. The results show that the proposed DRL-based algorithms can reduce the VM usage cost up to 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的棒棒糖完成签到 ,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
萝卜猪完成签到,获得积分10
4秒前
50秒前
李海艳完成签到 ,获得积分10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
Nicole完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得150
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
2分钟前
白云发布了新的文献求助10
2分钟前
2分钟前
Nicole发布了新的文献求助10
2分钟前
悦耳冬萱完成签到 ,获得积分10
3分钟前
彩虹儿应助af采纳,获得10
3分钟前
HRB完成签到 ,获得积分10
3分钟前
Adi完成签到,获得积分10
4分钟前
5分钟前
af完成签到,获得积分10
5分钟前
11发布了新的文献求助10
5分钟前
所所应助weinaonao采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
7分钟前
海风奕婕完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
小蘑菇应助科研通管家采纳,获得10
8分钟前
8分钟前
weinaonao发布了新的文献求助10
8分钟前
8分钟前
11完成签到,获得积分10
8分钟前
11发布了新的文献求助10
8分钟前
充电宝应助weinaonao采纳,获得10
8分钟前
9分钟前
孙国扬发布了新的文献求助10
9分钟前
11完成签到 ,获得积分10
9分钟前
hugeyoung完成签到,获得积分10
10分钟前
10分钟前
李健应助yukky采纳,获得30
10分钟前
白云完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505