Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments

计算机科学 强化学习 云计算 工作量 大数据 调度(生产过程) 软件部署 分布式计算 作业车间调度 SPARK(编程语言) 计算机集群 分析 人工智能 操作系统 数据科学 地铁列车时刻表 数学优化 程序设计语言 数学
作者
Muhammed Tawfiqul Islam,Shanika Karunasekera,Rajkumar Buyya
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1695-1710 被引量:55
标识
DOI:10.1109/tpds.2021.3124670
摘要

Big data frameworks such as Spark and Hadoop are widely adopted to run analytics jobs in both research and industry. Cloud offers affordable compute resources which are easier to manage. Hence, many organizations are shifting towards a cloud deployment of their big data computing clusters. However, job scheduling is a complex problem in the presence of various Service Level Agreement (SLA) objectives such as monetary cost reduction, and job performance improvement. Most of the existing research does not address multiple objectives together and fail to capture the inherent cluster and workload characteristics. In this article, we formulate the job scheduling problem of a cloud-deployed Spark cluster and propose a novel Reinforcement Learning (RL) model to accommodate the SLA objectives. We develop the RL cluster environment and implement two Deep Reinforce Learning (DRL) based schedulers in TF-Agents framework. The proposed DRL-based scheduling agents work at a fine-grained level to place the executors of jobs while leveraging the pricing model of cloud VM instances. In addition, the DRL-based agents can also learn the inherent characteristics of different types of jobs to find a proper placement to reduce both the total cluster VM usage cost and the average job duration. The results show that the proposed DRL-based algorithms can reduce the VM usage cost up to 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒啊柒la完成签到,获得积分10
刚刚
nihadksadho完成签到,获得积分10
4秒前
JamesPei应助wangayting采纳,获得10
4秒前
5秒前
慕青应助一静齐眉采纳,获得10
5秒前
nana发布了新的文献求助10
5秒前
星离zjp发布了新的文献求助10
6秒前
sakuraroad完成签到 ,获得积分10
8秒前
9秒前
juziyaya应助紧张的一鸣采纳,获得10
9秒前
9秒前
9秒前
10秒前
科研顺利完成签到,获得积分10
11秒前
星河完成签到,获得积分10
11秒前
pigff发布了新的文献求助10
11秒前
凡仔完成签到,获得积分10
12秒前
12秒前
海茵完成签到,获得积分10
12秒前
13秒前
钰钰yuyu发布了新的文献求助10
14秒前
共享精神应助冰美式采纳,获得10
15秒前
huzhy发布了新的文献求助10
15秒前
sys完成签到,获得积分10
16秒前
17秒前
17秒前
er发布了新的文献求助10
17秒前
yn发布了新的文献求助10
17秒前
19秒前
rcrc111完成签到 ,获得积分10
19秒前
20秒前
恰饭完成签到,获得积分10
20秒前
21秒前
田様应助钰钰yuyu采纳,获得10
22秒前
gg关闭了gg文献求助
22秒前
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
善学以致用应助星离zjp采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194