Control performance monitoring and degradation recovery in automatic control systems: A review, some new results, and future perspectives

降级(电信) 控制系统 控制(管理) 计算机科学 残余物 自动控制 绩效改进 模型预测控制 控制工程 可靠性工程 工程类 控制理论(社会学) 人工智能 电信 运营管理 电气工程 算法
作者
Steven X. Ding,Linlin Li
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:111: 104790-104790 被引量:25
标识
DOI:10.1016/j.conengprac.2021.104790
摘要

This paper addresses control performance monitoring (CPM) and degradation recovering in automatic control systems. It begins with a re-visit of CPM techniques and a summary of the major limitations of the existing CPM methods. They are (i) deficit in assessing control performance degradation caused by different types of disturbances and environment uncertainties, (ii) incapability for predicting performance degradation, and (iii) deficiency of efficient performance degradation recovering methods. In order to meet increasing demands of next generation automatic control systems for higher system performance, novel CPM methods have been developed in recent years, including performance assessment of control systems with deterministic disturbances and uncertainties, prediction of control performance degradation, and recovery of control performance degradation. Some of these methods and algorithms are introduced in the second part of this paper. The basis of these methods is a so-called residual centred model of feedback control systems, which allows a unified handling of control, monitoring and diagnosis in feedback control systems corrupted by disturbances and uncertainties. The focuses of these methods are on (i) introduction of the loop performance degradation index for the assessment and prediction of performance degradation in automatic control systems, (ii) predictive detection and estimation of loop performance degradation, and (iii) a data-driven performance degradation recovering scheme. The paper is concluded by a short summary of three future perspective topics, (i) prediction of economic system performance monitoring and estimation, (ii) reinforcement learning aided system performance recovery, and (iii) CPM digital twin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuzj应助163采纳,获得10
1秒前
qin完成签到 ,获得积分10
1秒前
可耐的问凝完成签到,获得积分10
1秒前
书晗发布了新的文献求助20
2秒前
lin发布了新的文献求助10
2秒前
跳跃鱼完成签到,获得积分10
2秒前
磨人的老妖精完成签到,获得积分10
3秒前
3秒前
GeniusC完成签到,获得积分10
3秒前
4秒前
4秒前
FashionBoy应助咖可乐采纳,获得10
5秒前
CR7应助淳于越泽采纳,获得20
5秒前
victory_liu发布了新的文献求助10
5秒前
亦清完成签到,获得积分10
5秒前
付艳完成签到,获得积分10
6秒前
梦醒完成签到,获得积分10
6秒前
NexusExplorer应助123采纳,获得10
7秒前
喜悦山柳完成签到,获得积分10
7秒前
专一的傲白完成签到 ,获得积分10
7秒前
7秒前
8秒前
咖啡味椰果完成签到 ,获得积分10
8秒前
DDDD发布了新的文献求助10
8秒前
Plucky完成签到,获得积分10
9秒前
FashionBoy应助Zzzzz采纳,获得30
9秒前
哦哟发布了新的文献求助10
10秒前
10秒前
10秒前
Spencer完成签到 ,获得积分10
11秒前
开朗的大叔完成签到,获得积分10
11秒前
111完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
12秒前
mojinzhao完成签到,获得积分10
12秒前
诸葛烤鸭完成签到,获得积分10
13秒前
张岱帅z完成签到,获得积分10
13秒前
Eason完成签到,获得积分10
13秒前
13秒前
咖可乐发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582