已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Control performance monitoring and degradation recovery in automatic control systems: A review, some new results, and future perspectives

降级(电信) 控制系统 控制(管理) 计算机科学 残余物 自动控制 绩效改进 模型预测控制 控制工程 可靠性工程 工程类 控制理论(社会学) 人工智能 电信 运营管理 电气工程 算法
作者
Steven X. Ding,Linlin Li
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:111: 104790-104790 被引量:25
标识
DOI:10.1016/j.conengprac.2021.104790
摘要

This paper addresses control performance monitoring (CPM) and degradation recovering in automatic control systems. It begins with a re-visit of CPM techniques and a summary of the major limitations of the existing CPM methods. They are (i) deficit in assessing control performance degradation caused by different types of disturbances and environment uncertainties, (ii) incapability for predicting performance degradation, and (iii) deficiency of efficient performance degradation recovering methods. In order to meet increasing demands of next generation automatic control systems for higher system performance, novel CPM methods have been developed in recent years, including performance assessment of control systems with deterministic disturbances and uncertainties, prediction of control performance degradation, and recovery of control performance degradation. Some of these methods and algorithms are introduced in the second part of this paper. The basis of these methods is a so-called residual centred model of feedback control systems, which allows a unified handling of control, monitoring and diagnosis in feedback control systems corrupted by disturbances and uncertainties. The focuses of these methods are on (i) introduction of the loop performance degradation index for the assessment and prediction of performance degradation in automatic control systems, (ii) predictive detection and estimation of loop performance degradation, and (iii) a data-driven performance degradation recovering scheme. The paper is concluded by a short summary of three future perspective topics, (i) prediction of economic system performance monitoring and estimation, (ii) reinforcement learning aided system performance recovery, and (iii) CPM digital twin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
berrypeng发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助20
2秒前
小蘑菇应助zzz采纳,获得10
4秒前
7秒前
wwwyyy完成签到 ,获得积分10
7秒前
A.y.w完成签到,获得积分10
9秒前
10秒前
Criminology34完成签到,获得积分0
10秒前
12秒前
xionggege完成签到,获得积分10
13秒前
嘎嘎嘎嘎完成签到,获得积分10
13秒前
YYy发布了新的文献求助10
16秒前
纯真沛儿完成签到,获得积分10
16秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
浮游应助嘎嘎嘎嘎采纳,获得30
20秒前
Dasiliy发布了新的文献求助10
23秒前
30秒前
甜甜的以筠完成签到 ,获得积分10
31秒前
爆米花应助无私的香菇采纳,获得10
32秒前
柿饼完成签到,获得积分10
34秒前
35秒前
Ava应助正摩六堂采纳,获得10
35秒前
天天快乐应助llt采纳,获得10
38秒前
39秒前
39秒前
大龙完成签到 ,获得积分10
43秒前
鞋子亮发布了新的文献求助10
43秒前
wanci应助鞋子亮采纳,获得10
49秒前
雪生在无人荒野完成签到,获得积分10
49秒前
顾矜应助wuuw采纳,获得10
50秒前
53秒前
小二郎应助知来者采纳,获得10
55秒前
57秒前
58秒前
nalan完成签到,获得积分10
59秒前
wuuw发布了新的文献求助10
1分钟前
1分钟前
稳重岩完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899884
求助须知:如何正确求助?哪些是违规求助? 4180149
关于积分的说明 12976325
捐赠科研通 3944459
什么是DOI,文献DOI怎么找? 2163750
邀请新用户注册赠送积分活动 1181994
关于科研通互助平台的介绍 1087841