Deep Learning-Based Minute-Scale Digital Prediction Model of Temperature-Induced Deflection of a Cable-Stayed Bridge: Case Study

偏转(物理) 结构工程 大梁 滞后 工程类 刚度 时间序列 计算机科学 机器学习 物理 光学 计算机网络
作者
Zixiang Yue,Youliang Ding,Hanwei Zhao
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:26 (6) 被引量:48
标识
DOI:10.1061/(asce)be.1943-5592.0001716
摘要

The evolution rule of temperature-induced deflection in main girders is an important index to evaluate the service performance of long-span cable-stayed bridges, which directly reflects the coupling effect between the vertical stiffness of the main girder and the tension of multiple cables. However, temperature-induced deflection is caused by the complex temperature field of the main girder, cable tower and cable, while monitoring data have documented a time-lag effect between the temperature and temperature-induced deflection. Hence, it is difficult to accurately describe and model the behavior of the temperature-induced deflection in a long-span cable-stayed bridge in service. To this end, by utilizing the advantage of long short-term memory (LSTM) network for time series prediction, a digital model in minute scale based on monitoring data and deep learning can be developed to predict temperature-induced deflection, and resolve the low precision caused by the single-point input and time-lag effect. Compared with traditional machine learning algorithm and linear regression, a deep learning LSTM network has the best performance. For the cable-stayed bridge in this paper, the mean absolute error of the LSTM model was even less than 0.5 mm, and with the combined hypothesis test, the early warning accuracy for the abnormal change of temperature-induced deflection could achieve a minimum of 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒迎曼完成签到,获得积分10
刚刚
烟花应助激情的一斩采纳,获得10
刚刚
天天快乐应助11采纳,获得10
1秒前
36456657应助八九采纳,获得50
1秒前
潦草完成签到,获得积分20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
freesialll完成签到 ,获得积分10
1秒前
深情安青应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
摇摇晃晃完成签到 ,获得积分10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
贪玩手链应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
李健的小迷弟应助liyi采纳,获得10
3秒前
华仔应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740