Deep Learning-Based Minute-Scale Digital Prediction Model of Temperature-Induced Deflection of a Cable-Stayed Bridge: Case Study

偏转(物理) 结构工程 大梁 滞后 工程类 刚度 时间序列 计算机科学 机器学习 计算机网络 光学 物理
作者
Zixiang Yue,Youliang Ding,Hanwei Zhao
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:26 (6) 被引量:37
标识
DOI:10.1061/(asce)be.1943-5592.0001716
摘要

The evolution rule of temperature-induced deflection in main girders is an important index to evaluate the service performance of long-span cable-stayed bridges, which directly reflects the coupling effect between the vertical stiffness of the main girder and the tension of multiple cables. However, temperature-induced deflection is caused by the complex temperature field of the main girder, cable tower and cable, while monitoring data have documented a time-lag effect between the temperature and temperature-induced deflection. Hence, it is difficult to accurately describe and model the behavior of the temperature-induced deflection in a long-span cable-stayed bridge in service. To this end, by utilizing the advantage of long short-term memory (LSTM) network for time series prediction, a digital model in minute scale based on monitoring data and deep learning can be developed to predict temperature-induced deflection, and resolve the low precision caused by the single-point input and time-lag effect. Compared with traditional machine learning algorithm and linear regression, a deep learning LSTM network has the best performance. For the cable-stayed bridge in this paper, the mean absolute error of the LSTM model was even less than 0.5 mm, and with the combined hypothesis test, the early warning accuracy for the abnormal change of temperature-induced deflection could achieve a minimum of 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助howey采纳,获得10
1秒前
1秒前
隐形曼青应助huangyao采纳,获得10
2秒前
2秒前
2秒前
顺利的伊应助geold采纳,获得10
2秒前
积极孤菱发布了新的文献求助10
2秒前
2秒前
柚子发布了新的文献求助10
2秒前
3秒前
丘比特应助专注灵凡采纳,获得10
3秒前
0gg发布了新的文献求助10
3秒前
Flicker完成签到 ,获得积分10
4秒前
苏书白应助LIU230907采纳,获得10
4秒前
setmefree发布了新的文献求助10
5秒前
能干豆芽发布了新的文献求助10
5秒前
6秒前
6秒前
ShowMaker应助fat采纳,获得20
7秒前
3268590946发布了新的文献求助10
8秒前
铁铁完成签到 ,获得积分10
8秒前
David发布了新的文献求助10
8秒前
学术小沈发布了新的文献求助30
9秒前
zhaow发布了新的文献求助10
10秒前
Ava应助守护星星采纳,获得30
10秒前
10秒前
杨振完成签到,获得积分10
10秒前
十四完成签到 ,获得积分10
10秒前
11秒前
Ender完成签到,获得积分10
12秒前
13秒前
...发布了新的文献求助10
14秒前
雪白的天薇完成签到,获得积分10
14秒前
晓兴兴完成签到,获得积分10
14秒前
14秒前
jin完成签到,获得积分10
15秒前
林白劳完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助北城采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663