Early event detection in a deep-learning driven quality prediction model for ultrasonic welding

人工智能 计算机科学 过程(计算) 人工神经网络 事件(粒子物理) 信号(编程语言) 机器学习 量子力学 操作系统 物理 程序设计语言
作者
Baicun Wang,Yang Li,Ying Luo,Xingyu Li,Theodor Freiheit
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:60: 325-336 被引量:31
标识
DOI:10.1016/j.jmsy.2021.06.009
摘要

A goal in ultrasonic welding (USW) process monitoring is to accurately predict quality outcomes based on monitored signals. However, in most cases, knowing only that the USW process has failed is insufficient. Modern process automation should assess signal information and intercede to rectify process problems. Identification of when a process signal deviates from an acceptable final quality outcome, i.e., the time at which an abnormal event starts, facilitates control action or root cause analysis to bring it back to compliance. A long short-term memory (LSTM) recurrent neural network is proposed to monitor USW and other time-series signals and identify this point. This deep neural network is trained to classify quality outcomes from continuous signals. The process monitoring signals and their sampling time are divided into finite segments as input to this network. The time segment at which the process signal first converges to the final quality class prediction is identified using cross-entropy of the classification probabilities. This procedure is demonstrated using USW quality monitoring algorithms and robot motion failure detection. The examples show an LSTM network not only provides high accuracy for USW quality prediction, but also that the time of classification convergence is consistent with variance observed in USW weld quality factors. Moreover, classification convergence time was shown to be associated to specific robot motion failures, useful as input to adaptive learning. This work realizes deep-learning driven quality prediction and early event detection for quality classification problems, and provides the information necessary for adaptive control algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Running完成签到 ,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
小霸王发布了新的文献求助10
2秒前
2秒前
bkagyin应助不敢装睡采纳,获得30
3秒前
bkagyin应助南南采纳,获得10
3秒前
3秒前
4秒前
Torrian发布了新的文献求助10
4秒前
Hello应助研友_ED5GK采纳,获得10
5秒前
徐哈哈应助伍绮彤采纳,获得10
5秒前
My发布了新的文献求助10
6秒前
情怀应助lJH采纳,获得10
7秒前
wang完成签到,获得积分10
7秒前
感性的道之完成签到 ,获得积分10
8秒前
popo6150完成签到 ,获得积分10
8秒前
梁萧关注了科研通微信公众号
9秒前
万能图书馆应助南南采纳,获得10
10秒前
changyixin'完成签到,获得积分10
11秒前
14秒前
14秒前
16秒前
Torrian完成签到,获得积分10
18秒前
Yang_Tianyu发布了新的文献求助10
19秒前
Alex应助复杂羊青采纳,获得50
22秒前
Komorebi发布了新的文献求助30
23秒前
23秒前
11完成签到,获得积分10
24秒前
哈哈完成签到 ,获得积分10
26秒前
不敢装睡发布了新的文献求助30
26秒前
坚强的寒风完成签到,获得积分10
28秒前
30秒前
lovt123完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544955
求助须知:如何正确求助?哪些是违规求助? 3976784
关于积分的说明 12315082
捐赠科研通 3644907
什么是DOI,文献DOI怎么找? 2007274
邀请新用户注册赠送积分活动 1042819
科研通“疑难数据库(出版商)”最低求助积分说明 931713