Early event detection in a deep-learning driven quality prediction model for ultrasonic welding

人工智能 计算机科学 过程(计算) 人工神经网络 事件(粒子物理) 信号(编程语言) 机器学习 物理 量子力学 程序设计语言 操作系统
作者
Baicun Wang,Yang Li,Ying Luo,Xingyu Li,Theodor Freiheit
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:60: 325-336 被引量:31
标识
DOI:10.1016/j.jmsy.2021.06.009
摘要

A goal in ultrasonic welding (USW) process monitoring is to accurately predict quality outcomes based on monitored signals. However, in most cases, knowing only that the USW process has failed is insufficient. Modern process automation should assess signal information and intercede to rectify process problems. Identification of when a process signal deviates from an acceptable final quality outcome, i.e., the time at which an abnormal event starts, facilitates control action or root cause analysis to bring it back to compliance. A long short-term memory (LSTM) recurrent neural network is proposed to monitor USW and other time-series signals and identify this point. This deep neural network is trained to classify quality outcomes from continuous signals. The process monitoring signals and their sampling time are divided into finite segments as input to this network. The time segment at which the process signal first converges to the final quality class prediction is identified using cross-entropy of the classification probabilities. This procedure is demonstrated using USW quality monitoring algorithms and robot motion failure detection. The examples show an LSTM network not only provides high accuracy for USW quality prediction, but also that the time of classification convergence is consistent with variance observed in USW weld quality factors. Moreover, classification convergence time was shown to be associated to specific robot motion failures, useful as input to adaptive learning. This work realizes deep-learning driven quality prediction and early event detection for quality classification problems, and provides the information necessary for adaptive control algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小中完成签到,获得积分10
刚刚
Akim应助Jin采纳,获得10
刚刚
zyj完成签到,获得积分10
1秒前
MrFamous发布了新的文献求助10
1秒前
fxx2021完成签到,获得积分10
1秒前
lbx发布了新的文献求助10
1秒前
xqwwqx发布了新的文献求助10
2秒前
2秒前
2秒前
活力的妙之完成签到 ,获得积分10
2秒前
充电宝应助坚强乌龟采纳,获得10
2秒前
xhy发布了新的文献求助10
3秒前
kingwill给zinnia的求助进行了留言
3秒前
大胆夜绿发布了新的文献求助10
3秒前
传统的凝天完成签到,获得积分10
3秒前
4秒前
尼克的朱迪完成签到,获得积分10
4秒前
4秒前
大个应助谷大喵唔采纳,获得10
4秒前
23发布了新的文献求助10
4秒前
简单的铃铛完成签到 ,获得积分10
5秒前
5秒前
5秒前
科研通AI2S应助体贴啤酒采纳,获得10
5秒前
6秒前
大模型应助Water103采纳,获得10
6秒前
7秒前
儒雅沛凝发布了新的文献求助10
7秒前
7秒前
DXXX发布了新的文献求助10
8秒前
小不溜完成签到 ,获得积分10
8秒前
王汉韬发布了新的文献求助10
8秒前
科研通AI2S应助咕噜仔采纳,获得20
8秒前
11111111完成签到,获得积分10
8秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
8秒前
9秒前
zbearupz完成签到,获得积分10
9秒前
xiao发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672