Early event detection in a deep-learning driven quality prediction model for ultrasonic welding

人工智能 计算机科学 过程(计算) 人工神经网络 事件(粒子物理) 信号(编程语言) 机器学习 物理 量子力学 程序设计语言 操作系统
作者
Baicun Wang,Yang Li,Ying Luo,Xingyu Li,Theodor Freiheit
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:60: 325-336 被引量:31
标识
DOI:10.1016/j.jmsy.2021.06.009
摘要

A goal in ultrasonic welding (USW) process monitoring is to accurately predict quality outcomes based on monitored signals. However, in most cases, knowing only that the USW process has failed is insufficient. Modern process automation should assess signal information and intercede to rectify process problems. Identification of when a process signal deviates from an acceptable final quality outcome, i.e., the time at which an abnormal event starts, facilitates control action or root cause analysis to bring it back to compliance. A long short-term memory (LSTM) recurrent neural network is proposed to monitor USW and other time-series signals and identify this point. This deep neural network is trained to classify quality outcomes from continuous signals. The process monitoring signals and their sampling time are divided into finite segments as input to this network. The time segment at which the process signal first converges to the final quality class prediction is identified using cross-entropy of the classification probabilities. This procedure is demonstrated using USW quality monitoring algorithms and robot motion failure detection. The examples show an LSTM network not only provides high accuracy for USW quality prediction, but also that the time of classification convergence is consistent with variance observed in USW weld quality factors. Moreover, classification convergence time was shown to be associated to specific robot motion failures, useful as input to adaptive learning. This work realizes deep-learning driven quality prediction and early event detection for quality classification problems, and provides the information necessary for adaptive control algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静萤给文静萤的求助进行了留言
刚刚
CipherSage应助活力的念蕾采纳,获得10
刚刚
guchenniub发布了新的文献求助10
刚刚
foreknowledge完成签到,获得积分10
刚刚
11完成签到,获得积分10
1秒前
2秒前
lf发布了新的文献求助10
3秒前
王美娟完成签到,获得积分20
3秒前
4秒前
复杂的雪巧完成签到,获得积分10
5秒前
6秒前
8秒前
鳗鱼语风发布了新的文献求助30
9秒前
9秒前
一条蛆完成签到,获得积分10
11秒前
长常九久完成签到 ,获得积分10
13秒前
飞飞发布了新的文献求助10
15秒前
一条蛆发布了新的文献求助10
16秒前
18秒前
19秒前
20秒前
烟花应助迅速如波采纳,获得10
23秒前
wakkkkk发布了新的文献求助10
24秒前
龙哥发布了新的文献求助10
25秒前
25秒前
26秒前
David发布了新的文献求助10
30秒前
30秒前
龙哥完成签到,获得积分10
32秒前
Buxi完成签到,获得积分10
32秒前
33秒前
明理凝阳发布了新的文献求助10
34秒前
自由的笑旋完成签到,获得积分10
34秒前
Ganlou应助yangyang采纳,获得10
35秒前
weiwei完成签到,获得积分10
35秒前
DezhaoWang发布了新的文献求助30
38秒前
romme发布了新的文献求助10
38秒前
m1完成签到,获得积分10
39秒前
科研通AI2S应助温暖砖头采纳,获得10
40秒前
Tong完成签到,获得积分20
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946093
关于积分的说明 8528271
捐赠科研通 2621651
什么是DOI,文献DOI怎么找? 1434003
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650673