数学
矩阵分解
排
秩(图论)
可逆矩阵
基质(化学分析)
跟踪(心理语言学)
集合(抽象数据类型)
分解
因式分解
奇异值分解
组合数学
算法
纯数学
计算机科学
物理
生物
数据库
哲学
特征向量
复合材料
量子力学
语言学
材料科学
程序设计语言
生态学
作者
Perfect Y. Gidisu,Michiel E. Hochstenbach
出处
期刊:SIAM journal on mathematics of data science
[Society for Industrial and Applied Mathematics]
日期:2022-03-01
卷期号:4 (1): 386-409
被引量:2
摘要
We propose a generalized CUR (GCUR) decomposition for matrix pairs $(A,B)$. Given matrices $A$ and $B$ with the same number of columns, such a decomposition provides low-rank approximations of both matrices simultaneously in terms of some of their rows and columns. We obtain the indices for selecting the subset of rows and columns of the original matrices using the discrete empirical interpolation method (DEIM) on the generalized singular vectors. When $B$ is square and nonsingular, there are close connections between the GCUR of $(A,B)$ and the DEIM-induced CUR of $AB^{-1}$. When $B$ is the identity, the GCUR decomposition of $A$ coincides with the DEIM-induced CUR decomposition of $A$. We also show similar connection between the GCUR of $(A,B)$ and the CUR of $AB^+$ for a nonsquare but full-rank matrix $B$, where $B^+$ denotes the Moore--Penrose pseudoinverse of $B$. While a CUR decomposition acts on one data set, a GCUR factorization jointly decomposes two data sets. The algorithm may be suitable for applications where one is interested in extracting the most discriminative features from one data set relative to another data set. In numerical experiments, we demonstrate the advantages of the new method over the standard CUR approximation for recovering data perturbed with colored noise and subgroup discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI