已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Screening of Metal-Ion Battery Electrode Materials

电压 电极 电池(电) 法拉第效率 材料科学 体积热力学 稳健性(进化) 储能 计算机科学 人工神经网络 纳米技术 离子 数码产品 机器学习 电化学 电气工程 化学 热力学 工程类 物理 有机化学 功率(物理) 物理化学 生物化学 基因
作者
Isaiah A. Moses,Rajendra P. Joshi,Burak Özdemir,Neeraj Kumar,Jesse Eickholt,Verónica Barone
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (45): 53355-53362 被引量:75
标识
DOI:10.1021/acsami.1c04627
摘要

Rechargeable batteries provide crucial energy storage systems for renewable energy sources, as well as consumer electronics and electrical vehicles. There are a number of important parameters that determine the suitability of electrode materials for battery applications, such as the average voltage and the maximum specific capacity which contribute to the overall energy density. Another important performance criterion for battery electrode materials is their volume change upon charging and discharging, which contributes to determine the cyclability, Coulombic efficiency, and safety of a battery. In this work, we present deep neural network regression machine learning models (ML), trained on data obtained from the Materials Project database, for predicting average voltages and volume change upon charging and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静想静静地静静完成签到 ,获得积分10
5秒前
领导范儿应助DPH采纳,获得10
10秒前
12秒前
14秒前
shunbao完成签到,获得积分10
15秒前
DarwinZC发布了新的文献求助10
16秒前
飞快的语蕊完成签到,获得积分10
16秒前
笗一一完成签到 ,获得积分10
22秒前
shunbaopan完成签到,获得积分10
22秒前
23秒前
BASS完成签到,获得积分10
24秒前
华仔应助俊逸如风采纳,获得10
24秒前
杜萌萌发布了新的文献求助10
29秒前
机灵的忆梅完成签到 ,获得积分10
32秒前
脑洞疼应助哆啦A梦采纳,获得10
36秒前
shunbaop完成签到,获得积分10
38秒前
臻灏完成签到,获得积分10
38秒前
隐形曼青应助purplelove采纳,获得30
40秒前
41秒前
白玫瑰完成签到,获得积分20
43秒前
凌涛发布了新的文献求助10
44秒前
在水一方应助yahonyoyoyo采纳,获得10
45秒前
IMIke发布了新的文献求助50
45秒前
白玫瑰发布了新的文献求助10
45秒前
杜萌萌完成签到,获得积分10
48秒前
52秒前
53秒前
53秒前
FashionBoy应助科研通管家采纳,获得10
54秒前
完美世界应助科研通管家采纳,获得10
54秒前
54秒前
酷波er应助科研通管家采纳,获得10
54秒前
FIN应助科研通管家采纳,获得30
54秒前
隐形曼青应助科研通管家采纳,获得10
54秒前
FIN应助科研通管家采纳,获得30
54秒前
54秒前
54秒前
贰鸟应助科研通管家采纳,获得30
54秒前
充电宝应助Yesyes采纳,获得10
56秒前
FashionBoy应助a553355采纳,获得10
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021