Machine Learning Screening of Metal-Ion Battery Electrode Materials

电极 电池(电) 材料科学 纳米技术 离子 化学 物理 有机化学 量子力学 物理化学 功率(物理)
作者
Isaiah A. Moses,Ritesh Joshi,Burak Özdemir,Neeraj Kumar,Jesse Eickholt,Verónica Barone
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (45): 53355-53362 被引量:44
标识
DOI:10.1021/acsami.1c04627
摘要

Rechargeable batteries provide crucial energy storage systems for renewable energy sources, as well as consumer electronics and electrical vehicles. There are a number of important parameters that determine the suitability of electrode materials for battery applications, such as the average voltage and the maximum specific capacity which contribute to the overall energy density. Another important performance criterion for battery electrode materials is their volume change upon charging and discharging, which contributes to determine the cyclability, Coulombic efficiency, and safety of a battery. In this work, we present deep neural network regression machine learning models (ML), trained on data obtained from the Materials Project database, for predicting average voltages and volume change upon charging and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18922406869发布了新的文献求助30
1秒前
Yara.H完成签到 ,获得积分10
2秒前
apple发布了新的文献求助10
2秒前
Sunshine完成签到,获得积分20
5秒前
吾侪完成签到,获得积分20
7秒前
默默无闻完成签到,获得积分10
7秒前
ZH完成签到 ,获得积分10
7秒前
润华完成签到 ,获得积分10
7秒前
苦咖啡行僧完成签到 ,获得积分10
8秒前
浅尝离白应助复杂的香菱采纳,获得10
8秒前
Huimin完成签到,获得积分10
8秒前
简简单单完成签到,获得积分10
9秒前
怡萱完成签到,获得积分10
10秒前
柳梦完成签到 ,获得积分10
11秒前
apple完成签到,获得积分20
11秒前
我是老大应助加减乘除采纳,获得10
13秒前
欣慰的书本完成签到 ,获得积分10
14秒前
大卫在分享应助桜棠采纳,获得10
14秒前
14秒前
kaisen完成签到,获得积分10
14秒前
qianci2009完成签到,获得积分10
15秒前
科研通AI2S应助Sunshine采纳,获得10
16秒前
Aloha完成签到 ,获得积分10
18秒前
王磊完成签到 ,获得积分10
18秒前
21秒前
神说要有光完成签到 ,获得积分10
24秒前
18922406869完成签到,获得积分10
24秒前
吾侪发布了新的文献求助10
25秒前
bobo发布了新的文献求助10
26秒前
gyx完成签到,获得积分10
29秒前
meimingzi完成签到,获得积分10
30秒前
lll完成签到,获得积分10
30秒前
嘴角上扬完成签到 ,获得积分10
31秒前
32秒前
琦琦777完成签到,获得积分10
32秒前
未完成完成签到,获得积分10
32秒前
微微发布了新的文献求助10
33秒前
18922406869发布了新的文献求助10
33秒前
123完成签到,获得积分10
33秒前
hm完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565