DeepCC: Multi-Agent Deep Reinforcement Learning Congestion Control for Multi-Path TCP Based on Self-Attention

计算机科学 强化学习 网络拥塞 计算机网络 实际吞吐量 多路径TCP 分布式计算 传输控制协议 显式拥塞通知 吞吐量 TCP调整 网络数据包 无线 多径传播 人工智能 频道(广播) 电信
作者
Bo He,Jingyu Wang,Qi Qi,Haifeng Sun,Jianxin Liao,Chunning Du,Xiang Yang,Zhu Han
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 4770-4788 被引量:33
标识
DOI:10.1109/tnsm.2021.3093302
摘要

With the development of the Internet of Things (IoT) and 5G, there are ubiquitous smart devices and network functions providing emerging network services efficiently and optimally through building many network connections based on WiFi, LTE/5G, Ethernet, and etc. The Multipath TCP (MPTCP) protocol that enables these devices to establish multiple paths for simultaneous data transmission, has been a widely used extension of standard TCP in smart devices and network functions. On the other hand, more heavy and time-varying traffic loads are generated in an MPTCP network, so that an efficient congestion control mechanism that schedules the traffic between multiple subflows and avoids congestion is highly required. In this paper, we propose a decentralized learning approach, DeepCC, to adapt to the volatile environments and realize the efficient congestion control. The Multi-Agent Deep Reinforcement Learning (MADRL) is used to learn a policy of congestion control for each subflow according to the real-time network states. To deal with the problem of the fixed state space and slow convergence, we adopt two self-attention mechanisms to receive the states and train the policy, respectively. Due to the asynchronous design of DeepCC, the learning process will not introduce extra delay and overhead on the decision-making process. Experiment results show that DeepCC consistently outperforms the well-known heuristic method and DRL-based MPTCP congestion control method in terms of goodput and jitter. Besides, DeepCC with the attention mechanism reduces convergence time by about 50% and increase goodput by about 80% compared with the commonly used structures of neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
刚刚
jlwang发布了新的文献求助10
刚刚
yuan完成签到,获得积分10
1秒前
shadow完成签到,获得积分10
2秒前
evelyn完成签到 ,获得积分10
2秒前
大力蚂蚁完成签到,获得积分10
3秒前
滴滴滴完成签到,获得积分10
3秒前
4秒前
啦啦啦123完成签到,获得积分10
4秒前
5秒前
难受的难受完成签到,获得积分10
5秒前
5秒前
吕小布完成签到,获得积分10
5秒前
脑洞疼应助华清引采纳,获得10
5秒前
枣树先生完成签到 ,获得积分10
5秒前
7秒前
田様应助卿卿采纳,获得10
7秒前
8秒前
8秒前
leinuo077完成签到,获得积分10
8秒前
秦艽完成签到,获得积分10
8秒前
天才c完成签到,获得积分10
9秒前
漂亮的访冬完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Tianji关注了科研通微信公众号
10秒前
科研小白鼠完成签到,获得积分10
10秒前
高大绝义发布了新的文献求助10
11秒前
大大发布了新的文献求助10
11秒前
11秒前
木木完成签到,获得积分10
11秒前
朴实的小萱完成签到 ,获得积分10
11秒前
Zsx完成签到,获得积分10
11秒前
文静完成签到 ,获得积分10
11秒前
端庄铃铛完成签到,获得积分20
12秒前
Jasper应助caomin采纳,获得10
12秒前
PGH完成签到,获得积分10
12秒前
12秒前
金鱼发布了新的文献求助10
13秒前
那儿完成签到,获得积分10
13秒前
Dec完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666902
求助须知:如何正确求助?哪些是违规求助? 3225730
关于积分的说明 9765171
捐赠科研通 2935586
什么是DOI,文献DOI怎么找? 1607790
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302